Search results for "transition-metal-complexes"

showing 8 items of 8 documents

Ligand-Based Charge-Transfer Luminescence in Ionic Cyclometalated Iridium(III) Complexes Bearing a Pyrene-Functionalized Bipyridine Ligand: A Joint T…

2012

Two new heteroleptic iridium(III) complexes [Ir(ppy)(2)(pyr(2)bpy)][PF(6)] ([1a][PF(6)]) and [Ir(dfppy)(2)(pyr(2)bpy)][PF(6)] ([2a][PF(6)]), where Hppy = 2-phenylpyridine, Hdfppy = 2-(3,5-difluorophenyl)pyridine, and pyr(2)bpy = 5,5'-bis(pyren-1-yl)-2,2'-bipyridine, have been synthesized and fully characterized. The single-crystal structures of pyr(2)bpy and the complexes 4{[1a][PF(6)]}·2CH(2)Cl(2)·9H(2)O and [2a][PF(6)]·0.25CH(2)Cl(2)·H(2)O have been determined. The effect of the pyrene substituents on the electronic properties is investigated through a comprehensive photophysical and theoretical study on the two complexes in comparison to reference complexes without substituents on the an…

ELECTROLUMINESCENT DEVICESAbsorption spectroscopyEMITTING ELECTROCHEMICAL-CELLSchemistry.chemical_element02 engineering and technology010402 general chemistryPhotochemistry01 natural sciencesInorganic ChemistryBipyridinechemistry.chemical_compoundPyridineCRYSTAL-STRUCTURESIridiumPhysical and Theoretical ChemistryCHELATED RUTHENIUM(II) COMPLEXEXACT-EXCHANGEChemistryLigand021001 nanoscience & nanotechnologyTRANSITION-METAL-COMPLEXES0104 chemical sciences3. Good healthCrystallographyPHOTOPHYSICAL PROPERTIESQUANTUM YIELDSIntramolecular forcePyreneEXCITED-STATE PROPERTIESSENSITIZED SOLAR-CELLS0210 nano-technologyLuminescenceInorg. Chem.
researchProduct

Iridium(III) Complexes with Phenyl-tetrazoles as Cyclometalating Ligands

2014

Ir(II) cationic complexes with cyclometalating tetrazolate ligands were prepared for the first time, following a two-step strategy based on (i) a silver-assisted cyclometalation reaction of a tetrazole derivative with IrCl3 affording a bis-cyclometalated solvato-complex P ([Ir(ptrz)(2)(CH3CN)(2)](+), Hptrz = 2-methyl-5-phenyl-2H-tetrazole); (ii) a substitution reaction with five neutral ancillary ligands to get [Ir(ptrz)(2)L](+), with L = 2,2'-bypiridine (1), 4,4'-di-tert-butyl-2,2'-bipyridine (2), 1,10-phenanthroline (3), and 2-(1-phenyl-1H-1,2,3-triazol-4-yl)pyridine (4), and [Ir(ptrz)(2)L-2](+), with L = tertbutyl isocyanide (5). X-ray crystal structures of P, 2, and 3 were solved. Elect…

Substitution reactionIr(III) complexePhenanthrolineIsocyanidechemistry.chemical_elementphenyl tetrazolesPhotochemistryMedicinal chemistryInorganic Chemistrychemistry.chemical_compoundBipyridinechemistryPyridineEMITTING ELECTROCHEMICAL-CELLS; TRANSITION-METAL-COMPLEXES; IR(III) COMPLEXES; ELECTROLUMINESCENT DEVICES; ANCILLARY LIGAND; SOLID-STATE; PHOTOPHYSICAL PROPERTIES; POLYPYRIDINE COMPLEXES; BLUE PHOSPHORESCENCE; ISOCYANIDE COMPLEXESTetrazoleIridiumPhysical and Theoretical ChemistryAcetonitrile
researchProduct

Origin of the large spectral shift in electroluminescence in a blue light emitting cationic iridium(III) complex

2007

A new, but archetypal compound [ Ir( ppy- F-2) (2)Me(4)phen] PF6, where ppy- F2 is 2-(2',4'- fluorophenyl) pyridine and Me(4)phen is 3,4,7,8- tetramethyl- 1,10- phenanthroline, was synthesized and used to prepare a solid-state light-emitting electrochemical cell (LEEC). This complex emits blue light with a maximum at 476 nm when photoexcited in a thin film, with a photoluminescence quantum yield of 52%. It yields an efficient single-component solid-state electroluminescence device with a current efficiency reaching 5.5 cd A(-1) and a maximum power efficiency of 5.8 Lm Watt(-1). However, the electroluminescence spectrum is shifted with respect to the photoluminescence spectrum by 80 nm resul…

education.field_of_studyFunctional Response TheoryPhotoluminescenceExcitation-EnergiesTransition-Metal-ComplexesChemistryPopulationQuantum yieldSolid-StateGeneral ChemistryExcited-State PropertiesElectroluminescencePhotochemistryOptical SpectroscopyExcited stateMaterials ChemistryLight emissionEmission spectrumElectrochemical-CellsTriplet stateeducationRoom-TemperatureSingle-LayerPhotophysical Properties
researchProduct

Cobalt Electrolyte/Dye Interactions in Dye-Sensitized Solar Cells: A Combined Computational and Experimental Study

2012

We report a combined experimental and computational investigation to understand the nature of the interactions between cobalt redox mediators and TiO2 surfaces sensitized by :ruthenium and organic dyes, and their impact on. the performance of the corresponding dye-sensitized solar cells (DSSCs). We : focus: on different ruthenium dyes and fully organic dyes, to understand the dramatic loss of efficiency observed for the prototype Ru(II) N719 dye in conjunction with :Cobalt: electrolytes. Both N719- and Z907-based DSSCs showed an increased lifetime in iodine-based electrolyte compared to the cobalt-based redox-shuttle; While the organic D21L6 and D25L6 cycles endowed.With long alkoxy chains,…

COLLOIDAL TIO2 FILMSinorganic chemicalsLOW QUANTUM YIELDSInorganic chemistrychemistry.chemical_element02 engineering and technologyElectrolyte010402 general chemistryPhotochemistry01 natural sciencesBiochemistryRedoxREDOX COUPLECatalysisEFFECTIVE CORE POTENTIALSDENSITY-FUNCTIONAL THEORYColloid and Surface ChemistryDENSITY-FUNCTIONAL THEORY; EFFECTIVE CORE POTENTIALS; INTRAMOLECULAR ELECTRON-TRANSFER; TRANSITION-METAL-COMPLEXES; COLLOIDAL TIO2 FILMS; LOW QUANTUM YIELDS; MOLECULAR CALCULATIONS; REDOX COUPLE; MAGNETIC-PROPERTIES; PHOTOVOLTAIC CELLSMAGNETIC-PROPERTIESPHOTOVOLTAIC CELLSLigandGeneral Chemistry021001 nanoscience & nanotechnologyMOLECULAR CALCULATIONSTRANSITION-METAL-COMPLEXES0104 chemical sciencesMarcus theoryRutheniumDye-sensitized solar cellchemistryAlkoxy groupINTRAMOLECULAR ELECTRON-TRANSFER0210 nano-technologyCobalt
researchProduct

From magnetic to nonlinear optical switches in spin-crossover complexes

2013

ISI Document Delivery No.: 109TF Times Cited: 0 Cited Reference Count: 173 Lacroix, Pascal G. Malfant, Isabelle Real, Jose-Antonio Rodriguez, Vincent Wiley-v c h verlag gmbh Weinheim Si; Various attempts to combine magnetic and nonlinear optical (NLO) properties in a molecule are reviewed, with a special focus on the possibility of interplay between the magnetic component and the quadratic (proportional to E-2) NLO response. This multidisciplinary research leads to the idea of spin-crossover-induced (SCO-induced) NLO switching and is evaluated at the synthetic level, with insights provided by computational chemistry. The need for nontraditional experimental setups to record NLO properties i…

Computational chemistryNonlinear opticsroom-temperaturetransition-metal-complexesSolid-stateNanotechnology02 engineering and technology010402 general chemistry01 natural scienceselectrical-conductivityInorganic ChemistryNonlinear opticalQuadratic equationSpin crossoverbinuclear iron(iii) complexesMagnetic componentsMoleculenlo propertiesNuclear Experimentliquid-crystalCondensed matter physicsChemistryNonlinear optics021001 nanoscience & nanotechnologySpin crossoverMaterials science0104 chemical sciences2nd-harmonic generationHigh Energy Physics::Experimentschiff-base ligandsray crystal-structure0210 nano-technologyFocus (optics)hyper-rayleigh scatteringMolecular devices
researchProduct

Photophysical Properties of Charged Cyclometalated Ir(III) Complexes: A Joint Theoretical and Experimental Study

2011

The photophysical properties of a series of charged biscyclometalated [Ir(ppy)(2)(N boolean AND N)](1+) complexes, where ppyH is 2-phenylpyridine and N boolean AND N is 2,2'-bipyridine (bpy), 6-phenyl-2,2'-bipyridine (pbpy), and 6,6'-dipheny1-2,2'-bipyridine (dpbpy) for complexes 1, 2, and 3, respectively, have been investigated in detail. The photoluminescence performance in solution decreases from 1 to 3 upon attachment of phenyl groups to the ancillary ligand. The absorption spectra recorded over time suggest that complex 3 is less stable compared to complexes 1 and 2 likely due to a nucleophilic-assisted ancillary ligand-exchange reaction. To clarify this behavior, the temperature depen…

ELECTROLUMINESCENT DEVICESPhotoluminescenceAbsorption spectroscopyEMITTING ELECTROCHEMICAL-CELLSLigandChemistryCATIONIC IRIDIUM COMPLEXESAnalytical chemistryLARGE MOLECULESTURN-ON TIMESTRANSITION-METAL-COMPLEXESInorganic ChemistryCONCENTRATION GRADIENTSReaction rate constantTEMPERATURE-DEPENDENCEQUANTUM YIELDSPhysical chemistryPhysical and Theoretical ChemistryENERGY-GAP LAWInorganic Chemistry
researchProduct

Syntheses, Structures, Magnetic Properties, and Density Functional Theory Magneto-Structural Correlations of Bis(μ-phenoxo) and Bis(μ-phenoxo)-μ-acet…

2013

The bis(mu-phenoxo) (FeNiIII)-Ni-II compound [Fe-III(N-3)(2)LNiII(H2O)(CH3CN)](ClO4) (1) and the bis(mu-phenoxo)-mu-acetate/bis(mu-phenoxo)-bis(mu-acetate) (FeNiII)-Ni-III compound {[Fe-III(OAc)LNiII(H2O)(mu-OAc)](0.6)center dot[(FeLNiII)-L-III(mu-OAc)(2)](0.4)}(ClO4)center dot 1.1H(2)O (2) have been synthesized from the Robson type tetraiminodiphenol macrocyclic ligand H2L, which is the [2 + 2] condensation product of 4-methyl-2,6-diformylphenol and 2,2'-dimethy1-1,3-diaminopropane. Single-crystal X-ray structures of both compounds have been determined. The cationic part of the dinuclear compound 2 is a cocrystal of the two species [Fe-III(OAc)LNiII(H2O)(mu-OAc)](+) (2A) and [(FeLNiII)-L-I…

Coordination ClustersCopper(Ii) ComplexesSingle-Molecule MagnetTransition-Metal-ComplexesChemistryStereochemistryTheoretical ExplorationExchange InteractionsCationic polymerizationCocrystalAnisotropy BarrierInorganic ChemistryCrystallographyFerromagnetismAntiferromagnetismLanthanide ComplexesDensity functional theoryMacrocyclic ligandPhysical and Theoretical ChemistrySpin Ground-StateGaussian-Basis SetsInorganic Chemistry
researchProduct

Azide Binding Controlled by Steric Interactions in Second Sphere. Synthesis, Crystal Structure, and Magnetic Properties of [Ni II 2 (L)(μ 1,1 -N 3 )]…

2016

International audience; The dinuclear Ni-II complex [Ni-2(L-2)][ClO4](2) (3) supported by the 28-membered hexaaza-dithiophenolate macro-cycle (L-2)(2-) binds the N-3(-) ion specifically end-on yielding [Ni-2(L-2)(mu(1,1)-N-3)] [ClO4] (7) or [Ni-2(L-2)(mu(1,1)-N-3)][BPh4] (8), while the previously reported complex [Ni2L1(mu(1,3)-N-3)][ClO4] (2) of the 24-membered macrocycle (L-1)(2-) coordinates it in the end-to-end fashion. A comparison of the X-ray structures of 2, 3, and 7 reveals the form-selective binding of complex 3 to be a consequence of its preorganized, channel-like binding pocket, which accommodates the azide anion via repulsive CH center dot center dot center dot pi interactions …

Steric effectsequilibrium-constantsStereochemistrytransition-metal-complexesCrystal structure010402 general chemistry01 natural sciences[ CHIM ] Chemical Sciencessolvation free-energyInorganic Chemistrychemistry.chemical_compoundtetranuclear nickel(ii) complexes[CHIM.CRIS]Chemical Sciences/CristallographyAntiferromagnetismMolecule[CHIM.COOR]Chemical Sciences/Coordination chemistryPhysical and Theoretical Chemistrymu-azidoEquilibrium constantmolecular-structure010405 organic chemistryChemistryLigandni-ii[ CHIM.INOR ] Chemical Sciences/Inorganic chemistryend-to-end0104 chemical sciencesexchange interactionsCrystallographyAzideGround stateorbital interactions[ CHIM.RADIO ] Chemical Sciences/Radiochemistry
researchProduct