Search results for "trna"

showing 10 items of 63 documents

Urmylation and tRNA thiolation functions of ubiquitin-like Uba4·Urm1 systems are conserved from yeast to man

2015

AbstractThe ubiquitin-like protein Urm1 from budding yeast and its E1-like activator Uba4 have dual roles in protein urmylation and tRNA thiolation pathways. To study whether these are conserved among eukaryotes, we used gene shuffles to replace the yeast proteins by their human counterparts, hURM1 and hUBA4/MOCS3. As judged from biochemical and genetical assays, hURM1 and hUBA4 are functional in yeast, albeit at reduced efficiencies. They mediate urmylation of the peroxiredoxin Ahp1, a known urmylation target in yeast, and support tRNA thiolation. Similar to hUBA4, yeast Uba4 itself is modified by Urm1 and hURM1 suggesting target overlap between eukaryal urmylation pathways. In sum, our st…

Saccharomyces cerevisiae ProteinsUba4 (hUBA4/MOCS3)Saccharomyces cerevisiaeBiophysicstRNA thiolationSaccharomyces cerevisiaeBiochemistryUbiquitin-like urmylationRNA TransferUbiquitinStructural BiologyAnticodonGeneticsHumansUbiquitinsMolecular BiologyProtein urmylationGeneUrm1 (hURM1)Conserved SequenceSequence Homology Amino AcidbiologyActivator (genetics)TRNA thiolationCell Biologybiology.organism_classificationNucleotidyltransferasesYeastBiochemistrySulfurtransferasesbiology.proteinPeroxiredoxinHeLa CellsFEBS Letters
researchProduct

Next-Generation Sequencing-Based RiboMethSeq  Protocol for Analysis of tRNA 2'-O-Methylation.

2016

Analysis of RNA modifications by traditional physico-chemical approaches is labor  intensive,  requires  substantial  amounts  of  input  material  and  only  allows  site-by-site  measurements.  The  recent  development  of  qualitative  and  quantitative  approaches  based  on   next-generation sequencing (NGS) opens new perspectives for the analysis of various cellular RNA  species.  The  Illumina  sequencing-based  RiboMethSeq  protocol  was  initially  developed  and  successfully applied for mapping of ribosomal RNA (rRNA) 2'-O-methylations. This method also  gives excellent results in the quantitative analysis of rRNA modifications in different species and  under varying growth condi…

Sequence Analysis RNAComputational BiologyHigh-Throughput Nucleotide Sequencing2′-O-methylationhigh-throughput sequencingRNA FungalSaccharomyces cerevisiaeMethylationArticledeleted strainRNA BacterialRNA TransferTRM3Escherichia coliTrmHtRNARiboMethSeqBiomolecules
researchProduct

Investigating the inhibition of FTSJ1 a tryptophan tRNA-specific 2’-O-methyltransferase by NV TRIDs, as a mechanism of readthrough in nonsense mutate…

2023

Abstract: Cystic Fibrosis (CF) is an autosomal recessive genetic disease caused by mutations in the CFTR gene, coding for the CFTR chloride channel. About 10% of the CFTR gene mutations are "stop" mutations, which generate a Premature Termination Codon (PTC), thus synthesizing a truncated CFTR protein. A way to bypass PTC relies on ribosome readthrough, which is the ri-bosome’s capacity to skip a PTC, thus generating a full-length protein. “TRIDs” are molecules exerting ribosome readthrough; for some, the mechanism of action is still under debate. We in-vestigate a possible mechanism of action (MOA) by which our recently synthesized TRIDs, namely NV848, NV914, and NV930, could exert their r…

Settore BIO/18 - GeneticaKeywords: FTSJ1 methyltransferase tRNA readthrough stop codon mutation small molecules docking molecular dynamics MM-GBSASettore CHIM/06 - Chimica OrganicaSettore CHIM/08 - Chimica Farmaceutica
researchProduct

Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders.

2014

Mutations in the cytosine-5 RNA methyltransferase NSun2 cause microcephaly and other neurological abnormalities in mice and human. How post-transcriptional methylation contributes to the human disease is currently unknown. By comparing gene expression data with global cytosine-5 RNA methylomes in patient fibroblasts and NSun2-deficient mice, we find that loss of cytosine-5 RNA methylation increases the angiogenin-mediated endonucleolytic cleavage of transfer RNAs (tRNA) leading to an accumulation of 5' tRNA-derived small RNA fragments. Accumulation of 5' tRNA fragments in the absence of NSun2 reduces protein translation rates and activates stress pathways leading to reduced cell siz…

Small RNARNA methylationBiologyNSun2MethylationGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesMisuMice0302 clinical medicineRNA TransferGene expressionAnimalsHumans5‐methylcytidine ; Misu ; Nsun2 ; Rna ModificationMolecular Biology030304 developmental biology5-methylcytidineRegulation of gene expression0303 health sciencesTRNA methylationGeneral Immunology and MicrobiologyGeneral NeuroscienceGene Expression ProfilingRNABrainArticlesMethylationMethyltransferasesRibonuclease PancreaticRNA modificationMolecular biologyOxidative StressGene Expression RegulationTransfer RNANervous System Diseases030217 neurology & neurosurgery5‐methylcytidine
researchProduct

unitas: the universal tool for annotation of small RNAs

2017

AbstractBackgroundNext generation sequencing is a key technique in small RNA biology research that has led to the discovery of functionally different classes of small non-coding RNAs in the past years. However, reliable annotation of the extensive amounts of small non-coding RNA data produced by high-throughput sequencing is time-consuming and requires robust bioinformatics expertise. Moreover, existing tools have a number of shortcomings including a lack of sensitivity under certain conditions, limited number of supported species or detectable sub-classes of small RNAs.ResultsHere we introduce unitas, an out-of-the-box ready software for complete annotation of small RNA sequence datasets, …

Small RNAtRNA-derived fragments (tRFs)Computational biologypiRNABiologyDNA sequencing570 Life sciencesAnnotationEnsemblHumansRNA-seq data analysismiRNAGeneticsbusiness.industryphasiRNARNAHigh-Throughput Nucleotide SequencingUsabilityMolecular Sequence AnnotationNon-coding RNAKey (cryptography)RNA Small UntranslatedSmall non-coding RNAsbusinessSoftwareHeLa Cells570 Biowissenschaften
researchProduct

The Mitochondrial tRNASer(UCN) Gene: A Novel m.7484A>G Mutation Associated with Mitochondrial Encephalomyopathy and Literature Review

2023

Mitochondrial tRNASer(UCN) is considered a hot-spot for non-syndromic and aminoglycoside-induced hearing loss. However, many patients have been described with more extensive neurological diseases, mainly including epilepsy, myoclonus, ataxia, and myopathy. We describe a novel homoplasmic m.7484A>G mutation in the tRNASer(UCN) gene affecting the third base of the anticodon triplet in a girl with profound intellectual disability, spastic tetraplegia, sensorineural hearing loss, a clinical history of epilepsia partialis continua and vomiting, typical of MELAS syndrome, leading to a myoclonic epilepticus status, and myopathy with severe COX deficiency at muscle biopsy. The mutation was also …

Space and Planetary SciencePaleontologyencephalomyopathy tRNASer(UCN) homoplasmic mutation mitochondrial DNAGeneral Biochemistry Genetics and Molecular BiologyEcology Evolution Behavior and Systematics
researchProduct

Kti12, a PSTK-like tRNA dependent ATPase essential for tRNA modification by Elongator

2019

Abstract Posttranscriptional RNA modifications occur in all domains of life. Modifications of anticodon bases are of particular importance for ribosomal decoding and proteome homeostasis. The Elongator complex modifies uridines in the wobble position and is highly conserved in eukaryotes. Despite recent insights into Elongator's architecture, the structure and function of its regulatory factor Kti12 have remained elusive. Here, we present the crystal structure of Kti12′s nucleotide hydrolase domain trapped in a transition state of ATP hydrolysis. The structure reveals striking similarities to an O-phosphoseryl-tRNA kinase involved in the selenocysteine pathway. Both proteins employ similar …

TRNA modificationSaccharomyces cerevisiae ProteinsProtein ConformationWobble base pairSaccharomyces cerevisiaeBiologyChaetomiumCrystallography X-Ray03 medical and health scienceschemistry.chemical_compound0302 clinical medicineRNA TransferATP hydrolysisGeneticsRNA and RNA-protein complexesAnticodonRNA Processing Post-TranscriptionalUridine030304 developmental biologyAdaptor Proteins Signal TransducingAdenosine Triphosphatases0303 health sciencesSelenocysteineRNATRNA bindingCell biologychemistryTransfer RNASelenocysteine incorporationCarrier ProteinsRibosomes030217 neurology & neurosurgery
researchProduct

MODOMICS: a database of RNA modification pathways—2013 update

2012

MODOMICS is a database of RNA modifications that provides comprehensive information concerning the chemical structures of modified ribonucleosides, their biosynthetic pathways, RNA-modifying enzymes and location of modified residues in RNA sequences. In the current database version, accessible at http://modomics.genesilico.pl, we included new features: a census of human and yeast snoRNAs involved in RNA-guided RNA modification, a new section covering the 5′-end capping process, and a catalogue of ‘building blocks’ for chemical synthesis of a large variety of modified nucleosides. The MODOMICS collections of RNA modifications, RNA-modifying enzymes and modified RNAs have been also updated. A…

TRNA modificationSequence analysisBiologycomputer.software_genre03 medical and health sciences0302 clinical medicineRNA Small NuclearEpitranscriptomicsGeneticsHumansRNA Small NucleolarRNA Processing Post-TranscriptionalSmall nucleolar RNA030304 developmental biologyGeneticsInternet0303 health sciencesDatabaseSequence Analysis RNAMRNA modificationRNAArticlesRibosomal RNAEnzymes3. Good healthTransfer RNARNADatabases Nucleic Acidcomputer030217 neurology & neurosurgeryNucleic Acids Research
researchProduct

Mitochondrial DNA TRNACYS mutation in a family with frontotemporal dementia and Parkinson’s disease

2010

TRNACYS mutation frontotemporal dementia Parkinson's diseaseSettore MED/26 - Neurologia
researchProduct

Methylation status of VTRNA2-1/nc886 is stable across populations, monozygotic twin pairs and in majority of tissues.

2022

Aims & methods: The aim of this study was to characterize the methylation level of a polymorphically imprinted gene, VTRNA2-1/nc886, in human populations and somatic tissues.48 datasets, consisting of more than 30 tissues and >30,000 individuals, were used. Results: nc886 methylation status is associated with twin status and ethnic background, but the variation between populations is limited. Monozygotic twin pairs present concordant methylation, whereas similar to 30% of dizygotic twin pairs present discordant methylation in the nc886 locus. The methylation levels of nc886 are uniform across somatic tissues, except in cerebellum and skeletal muscle. Conclusion: The nc886 imprint may be est…

VTRNA2-1EXPRESSIONCancer Researchpolymorphic imprintingväestötutkimusDISEASEnc886Geneticsnoncoding 886COHORTPLACENTAEXPOSUREgeeniekspressioBRAINEPIGENOME-WIDE ASSOCIATIONRISKDNA methylationgeenit1184 Genetics developmental biology physiologyDna Methylation ; Vtrna2-1 ; Developmental Origins Of Health And Disease Hypothesis ; Imprinting ; Metastable Epiallele ; Nc886 ; Noncoding 886 ; Polymorphic Imprinting ; Population Studiespopulation studies217 Medical engineeringmetastable epialleleDNA-metylaatiodevelopmental origins of health and disease hypothesisHEALTH3111 Biomedicineimprinting
researchProduct