Search results for "tutkimuslaitteet"
showing 10 items of 84 documents
A new 18 GHz room temperature electron cyclotron resonance ion source for highly charged ion beams
2020
An innovative 18 GHz HIISI (Heavy Ion Ion Source Injector) room temperature Electron Cyclotron Resonance (ECR) ion source (ECRIS) has been designed and constructed at the Department of Physics, University of Jyväskylä (JYFL), for the nuclear physics program of the JYFL Accelerator Laboratory. The primary objective of HIISI is to increase the intensities of medium charge states (M/Q ≅ 5) by a factor of 10 in comparison with the JYFL 14 GHz ECRIS and to increase the maximum usable xenon charge state from 35+ to 44+ to serve the space electronics irradiation testing program. HIISI is equipped with a refrigerated permanent magnet hexapole and a noncylindrical plasma chamber to achieve very stro…
Charge breeding at GANIL: Improvements, results, and comparison with the other facilities
2019
International audience; The 1+/n+ method, based on an ECRIS charge breeder (CB) originally developed at the LPSC laboratory, is now implemented at GANIL for the production of Radioactive Ion Beams (RIBs). Prior to its installation in the middle of the low energy beam line of the SPIRAL1 facility, the 1+/n+ system CB has been modified based on the experiments performed on the CARIBU Facility at Argone National Laboratory. Later, it has been tested at the 1+/n+ LPSC test bench to validate its operation performances. Charge breeding efficiencies as well as charge breeding times have been measured for noble gases and alkali elements. The commissioning phase started at GANIL in the second half-y…
Compact Cell Imaging Device (CoCID) provides insights into the cellular origins of viral infections
2021
The overall CoCID concept is centred on providing virologists with a next-generation imaging device, which, through increased penetration and depth of focus, as well as through high natural contrast and sensitivity to organelle density (including virus-related organelles), will produce higher-fidelity ultrastructural images of whole intact cells. These insights will, in turn, help increase our understanding of the links between the structural reorganisation of cells and the mechanisms of viral entry, replication, assembly, and egress in cells. CoCID will provide this valuable imaging capability in the form of a compact lab-scale device that will greatly improve the accessibility of soft X-r…
Offline commissioning of a new gas cell for the MARA Low-Energy Branch
2023
Results of offline commissioning tests for a new dedicated gas cell for the Mass Analysing Recoil Apparatus (MARA) Low-Energy Branch are reported. Evacuation time, ion survival and transport efficiency in helium buffer gas were characterized with a radioactive 223Ra 𝛼-recoil source. Suppression of the ion signal, originating from non-neutralized species in the gas cell, was explored with 219Rn ions, the daughter recoil of 223Ra, as a function of voltage applied to one of the ion-collector electrodes. Two-step laser resonance ionization of stable tin isotopes produced inside the gas cell from a heated bronze filament was demonstrated, and broadening of the atomic resonances in argon buffer …
Calibration of the photon spectrometer PHOS of the ALICE experiment
2019
Journal of Instrumentation 14(05), P05025 - P05025 (2019). doi:10.1088/1748-0221/14/05/P05025
New exotic beams from the SPIRAL 1 upgrade
2018
Since 2001, the SPIRAL 1 facility has been one of the pioneering facilities in ISOL techniques for reaccelerating radioactive ion beams: the fragmentation of the heavy ion beams of GANIL on graphite targets and subsequent ionization in the Nanogan ECR ion source has permitted to deliver beams of gaseous elements (He, N, O, F, Ne, Ar, Kr) to numerous experiments. Thanks to the CIME cyclotron, energies up to 20 AMeV could be obtained. In 2014, the facility was stopped to undertake a major upgrade, with the aim to extend the production capabilities of SPIRAL 1 to a number of new elements. This upgrade, which is presently under commissioning, consists in the integration of an ECR booster in the…
Optimization of instrumental parameters for improving sensitivity of single particle inductively-coupled plasma mass spectrometry analysis of gold
2021
Single particle inductively-coupled plasma mass spectrometry (spICP-MS) is a promising technique for analysis of engineered nanoparticles, whose utilization has increased substantially over the past years. Optimization of instrumental conditions is, however, crucial to improve the sensitivity and precision of nanoparticle (NP) detection. In this study, the influence of ICP-MS instrumental parameters (nebulizer gas flow, plasma radiofrequency-power and sampling depth) on the signal intensity of gold in spICP-MS was evaluated using dispersions of Au NPs and a solution of dissolved gold. The interaction effects of the main factors were found to have a significant effect on the signal intensity…
Simultaneous non-invasive gas analysis in artificial photosynthesis reactions using rotational Raman spectroscopy
2022
Optimising reactions in artificial photosynthesis research requires screening of many reaction and operation parameters, which is often resource-intense and time-consuming. In this paper, we demonstrate the use of a rotational Raman-based spectrometer for non-invasive quantification of several gases (H2, O2, N2, CO, CO2) with short analysis times (15 s), enabling high throughput screening. Furthermore, with this device, reaction progress can be monitored in situ, by real-time simultaneous quantification of multiple gases. We have applied this instrument and developed a method to study the O2 dependency of a prototypic light-driven hydrogen evolution reaction, showcasing the value of this ap…
Spectroscopic Tools Applied to Flerovium Decay Chains
2020
Abstract An upgraded TASISpec setup, with the addition of a veto DSSD and the new Compex detector-germanium array, has been employed with the gas-filled recoil separator TASCA at the GSI Helmholtzzentrum für Schwerionenforschung Darmstadt, to study flerovium (element 114) decay chains. The detector upgrades along with development of new analytical techniques have improved the sensitivity of the TASISpec setup for measuring α-photon coincidences. These improvements have been assessed with test reactions. The reaction 48Ca+206,207Pb was used for verification of experimental parameters such as transmission to implantation DSSD and target-segment to α-decay correlations. The reaction 48Ca+ nat …
A Low Energy H- Beamline for the ALPHA Antihydrogen Experiment
2022
Abstract The CERN ALPHA experiment makes precision measurements of antihydrogen atoms, confined in a superconducting magnetic minimum trap. Recent measurements of the antihydrogen spectrum have already provided high-resolution tests of fundamental symmetries, and ALPHA has now embarked on an ambitious upgrade programme aimed at directly comparing hydrogen and antihydrogen within their existing atom trap. One aspect of this upgrade will be the development of a low-energy (50 eV) hydrogen ion source that is compatible with ALPHA’s existing magnetic charged particle beamlines. PELLIS, previously developed at JYFL, is a 5 keV filament-driven source that generates H- beams with low emittances an…