Search results for "uce"

showing 10 items of 2599 documents

Fluorescence Quenching in BODIPYs Having Ir‐ and Rh‐Tethered Complexes

2016

The effect of Rh- and Ir-centers on the optical properties of the BODIPY core has been studied. To this end, novel metal complexes tethered to BODIPY have been prepared through an easy and versatile procedure using N-directed C–H activation reactions. The organometallic moiety has a tremendous influence on the emissive properties of the BODIPY fragment. A photoinduced electron transfer (PET) mechanism is suggested to be the main mechanism responsible for the suppression of the BODIPY fluorescence emission in the newly formed dyads. The efficiency of the PET depends on both the distance between the chromophores in the dyad and the nature of the transition metal (Rh vs. Ir).

010405 organic chemistryChromophore010402 general chemistryPhotochemistry01 natural sciencesFluorescencePhotoinduced electron transfer0104 chemical sciencesInorganic ChemistryMetalchemistry.chemical_compoundchemistryTransition metalvisual_artvisual_art.visual_art_mediumMoietyBODIPYEuropean Journal of Inorganic Chemistry
researchProduct

Light Induced C-C Coupling of 2-Chlorobenzazoles with Carbamates, Alcohols, and Ethers.

2016

A light induced, transition-metal-free C-C coupling reaction of 2-chlorobenzazoles with aliphatic carbamates, alcohols, and ethers is presented. Inexpensive reagents, namely sodium acetate, benzophenone, water, and acetonitrile, are employed in a simple reaction protocol using a cheap and widely available 25 W energy saving UV-A lamp at ambient temperature.

010405 organic chemistryOrganic Chemistry010402 general chemistry01 natural sciencesCoupling reaction0104 chemical scienceschemistry.chemical_compoundC c couplingchemistryReagentLight inducedBenzophenoneOrganic chemistryAcetonitrileSodium acetateThe Journal of organic chemistry
researchProduct

Cobaltocenium substituents as electron acceptors in photosynthetic model dyads

2017

Abstract Cobaltocenium carboxylic acid hexafluorophosphate has been attached to a zinc(II) meso-tetraphenyl porphyrin chromophore via an amide linkage. Optical and electrochemical studies reveal that the metallocene and the porphyrin interact only negligibly in the ground state of the dyad. Photoinduced charge-shift from the zinc porphyrin to the cobaltocenium substituent to give the zinc porphyrin radical cation and the cobaltocene occurs upon exciting the porphyrin with light. Steady state emission, time-resolved fluorescence and transient absorption pump–probe spectroscopy in addition to density functional theory calculations suggest that the charge shift to the cobaltocenium substituent…

010405 organic chemistryOrganic ChemistrySubstituentChromophore010402 general chemistryPhotochemistry01 natural sciencesBiochemistryPorphyrinPhotoinduced electron transfer0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundchemistryExcited stateHexafluorophosphateCobaltoceneMaterials ChemistryPhysical and Theoretical ChemistryTriplet stateJournal of Organometallic Chemistry
researchProduct

Volcanic structures investigation through SAR and seismic interferometric methods: The 2011-2013 Campi Flegrei unrest episode

2019

Observations from satellites provide high-resolution images of ground deformation allowing to infer deformation sources by developing advanced modeling of magma ascent and intrusion processes. Nevertheless, such models can be strongly biased without a precise model of the internal structure of the volcano. In this study, we jointly exploited two interferometric techniques to interpret the 2011–2013 unrest at Campi Flegrei caldera (CFc). The first is the Interferometric Synthetic Aperture Radar (InSAR) technique, which provides highly-resolved spatial and temporal images of ground deformation. The second is the Ambient Noise Tomography (ANT), which images subsurface structures, providing the…

010504 meteorology & atmospheric sciences0208 environmental biotechnologyAmbient noise levelSoil Science02 engineering and technologyInduced seismicityDeformation (meteorology)01 natural sciencesInSARTotal horizontal derivativeSillInterferometric synthetic aperture radarCalderaComputers in Earth SciencesNatural seismicity0105 earth and related environmental sciencesRemote sensinggeographygeography.geographical_feature_categoryGeology020801 environmental engineeringCampi Flegrei calderaVolcanoAmbient noise tomographyMagmaGeologySeismology
researchProduct

Hydrothermal pressure-temperature control on CO2 emissions and seismicity at Campi Flegrei (Italy)

2021

Fluids supplied by stored magma at depth are causal factors of volcanic unrest, as they can cause pressurization/heating of hydrothermal systems. However, evidence for links between hydrothermal pressurization, CO2 emission and volcano seismicity have remained elusive. Here, we use recent (2010−2020) observations at Campi Flegrei caldera (CFc) to show hydrothermal pressure, gas emission and seismicity at CFc share common source areas and well-matching temporal evolutions. We interpret the recent escalation in seismicity and surface gas emissions as caused by pressure-temperature increase at the top of a vertically elongated (0.3–2 km deep) gas front. Using mass (steam) balance consideration…

010504 meteorology & atmospheric sciencesCampi Flegrei mantle geochemistry CO2 emission Fumarole compositions Hydrothermal systems Volcanic unrest Volcano seismicityInduced seismicity010502 geochemistry & geophysics01 natural sciencesHydrothermal circulationHydrothermal systemsCabin pressurizationGeochemistry and PetrologyCalderaPetrologyFumarole compositions0105 earth and related environmental sciencesgeographygeography.geographical_feature_categoryVolcanic unrest; Hydrothermal systems; Campi Flegrei; Fumarole compositions; CO2 emission; Volcano seismicityFront (oceanography)Volcano seismicityGeophysicsVolcanoVolume (thermodynamics)Volcanic unrestCO2 emissionMagmaCampi FlegreiGeology
researchProduct

Sun-induced chlorophyll fluorescence III: benchmarking retrieval methods and sensor characteristics for proximal sensing

2019

[EN] The interest of the scientific community on the remote observation of sun-induced chlorophyll fluorescence (SIF) has increased in the recent years. In this context, hyperspectral ground measurements play a crucial role in the calibration and validation of future satellite missions. For this reason, the European cooperation in science and technology (COST) Action ES1309 OPTIMISE has compiled three papers on instrument characterization, measurement setups and protocols, and retrieval methods (current paper). This study is divided in two sections; first, we evaluated the uncertainties in SIF retrieval methods (e.g., Fraunhofer line depth (FLD) approaches and spectral fitting method (SFM))…

010504 meteorology & atmospheric sciencesComputer scienceEconomicsGround spectrometersScience0211 other engineering and technologiesContext (language use)02 engineering and technologyGround spectrometer01 natural sciencesSpectral lineRetrieval methodApproximation errorSun-induced chlorophyll fluorescenceSensitivity (control systems)910 Geography & travelChlorophyll fluorescence021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingRetrieval methodsSpectrometerSun-induced chlorophyll fluorescence; Ground spectrometers; Retrieval methods1900 General Earth and Planetary SciencesQHyperspectral imagingsun-induced chlorophyll fluorescence; ground spectrometers; retrieval methods3. Good health10122 Institute of GeographyFISICA APLICADALine (geometry)General Earth and Planetary Sciencesddc:620Interpolation
researchProduct

Linking photosynthesis and sun-induced fluorescence at sub-daily to seasonal scales

2018

Abstract Due to its close link to the photosynthetic process, sun-induced chlorophyll fluorescence (F) opens new possibilities to study dynamics of photosynthetic light reactions and to quantify CO2 assimilation rates. Although recent studies show that F is linearly related to gross primary production (GPP) on coarse spatial and temporal scales, it is argued that this relationship may be mainly driven by seasonal changes in absorbed photochemical active radiation (APAR) and less by the plant light use efficiency (LUE). In this work a high-resolution spectrometer was used to continuously measure red and far-red fluorescence and different reflectance indices within a sugar beet field during t…

010504 meteorology & atmospheric sciencesEconomicsPhotochemical reflectance index0211 other engineering and technologiesEddy covarianceGrowing seasonSoil Science02 engineering and technologyPhotochemical Reflectance IndexPhotosynthesisAtmospheric sciences01 natural sciencesFluorescence yieldSun-induced chlorophyll fluorescencemedicineddc:550Computers in Earth SciencesChlorophyll fluorescenceBiology021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingLight use efficiencyPhysicsDiurnal temperature variationPrimary productionGeologySeasonalitymedicine.diseaseChemistryEngineering sciences. Technology
researchProduct

Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress

2019

Remote sensing of solar-induced chlorophyll fluorescence (SIF) is a rapidly advancing front in terrestrial vegetation science, with emerging capability in space-based methodologies and diverse application prospects. Although remote sensing of SIF – especially from space – is seen as a contemporary new specialty for terrestrial plants, it is founded upon a multi-decadal history of research, applications, and sensor developments in active and passive sensing of chlorophyll fluorescence. Current technical capabilities allow SIF to be measured across a range of biological, spatial, and temporal scales. As an optical signal, SIF may be assessed remotely using high-resolution spectral sensors in …

010504 meteorology & atmospheric sciencesFIS/06 - FISICA PER IL SISTEMA TERRA E PER IL MEZZO CIRCUMTERRESTRE0208 environmental biotechnologySoil ScienceReview02 engineering and technologyPhotochemical Reflectance Index01 natural sciencesArticleGEO/11 - GEOFISICA APPLICATASIF retrieval methodsRadiative transfer modellingRadiative transfer910 Geography & travelComputers in Earth SciencesChlorophyll fluorescence1111 Soil Science1907 GeologyAirborne instruments0105 earth and related environmental sciencesRemote sensingStress detectionGEO/12 - OCEANOGRAFIA E FISICA DELL'ATMOSFERA1903 Computers in Earth SciencesPrimary productionGeologyVegetationPassive optical techniquesField (geography)020801 environmental engineeringGEO/10 - GEOFISICA DELLA TERRA SOLIDA10122 Institute of GeographySun-induced fluorescenceRemote sensing (archaeology)Sun-induced fluorescence Steady-state photosynthesis Stress detection Radiative transfer modelling SIF retrieval methods. Satellite sensors Airborne instruments Applications Terrestrial vegetation Passive optical techniques. ReviewApplicationsTerrestrial vegetationEnvironmental scienceSatelliteSteady-state photosynthesisSatellite sensors
researchProduct

Tillage Impacts on Initial Soil Erosion in Wheat and Sainfoin Fields under Simulated Extreme Rainfall Treatments

2021

The main aim of this research was to determine the potential effects of different tillage systems (TT: traditional tillage and RT: reduced tillage) on runoff and erosion at two different locations (Kahramanmaras and Tarsus, Southern Turkey) under (i) fallow, (ii) wheat (Triticumaestivum L.), and (iii) sainfoin (Onobrychissativa L.) crops. Rainfall simulations with intensity of 120 mm h&minus

010504 meteorology & atmospheric sciencesGeography Planning and Developmentlcsh:TJ807-830lcsh:Renewable energy sourcesrunoffManagement Monitoring Policy and Law01 natural sciencesRunoff volumelcsh:Environmental sciences0105 earth and related environmental sciencesSediment yieldlcsh:GE1-350soil erosionextreme rainfall eventsRenewable Energy Sustainability and the Environmentlcsh:Environmental effects of industries and plants04 agricultural and veterinary sciencesrainfall simulationreduced tillageSoil tillageSediment concentrationRunoff coefficientTillagelcsh:TD194-195Agronomy040103 agronomy & agricultureErosion0401 agriculture forestry and fisheriesEnvironmental scienceSurface runoffSustainability
researchProduct

High time resolution fluctuations in volcanic carbon dioxide degassing from Mount Etna

2014

Abstract We report here on the first record of carbon dioxide gas emission rates from a volcano, captured at ≈ 1 Hz. These data were acquired with a novel technique, based on the integration of UV camera observations (to measure SO2 emission rates) and field portable gas analyser readings of plume CO2/SO2 ratios. Our measurements were performedat the North East crater of Mount Etna, southern Italy, and the data reveal strong variability in CO2 emissions over timescales of tens to hundreds of seconds, spanning two orders of magnitude. This carries importantimplications for attempts to constrain global volcanic CO2 release to the atmosphere, and will lead to an increased insight into short te…

010504 meteorology & atmospheric sciencesLagPlume imagingInduced seismicity010502 geochemistry & geophysicsAtmospheric sciencesPassive degassing01 natural sciencesAtmospherechemistry.chemical_compoundImpact craterGeochemistry and Petrology0105 earth and related environmental sciencesCarbon dioxide; Passive degassing; Plume imaging; Volcanic remote sensing; Volcano seismology; Geophysics; Geochemistry and PetrologyBasaltgeographygeography.geographical_feature_categoryVolcano seismologyPlumeVolcanic remote sensingGeophysicsVolcanochemistryCarbon dioxide13. Climate actionCarbon dioxideCarbon dioxide; Passive degassing; Plume imaging; Volcanic remote sensing; Volcano seismology; Geochemistry and Petrology; GeophysicsSeismologyGeology
researchProduct