Search results for "uranium"

showing 10 items of 260 documents

Alpha decay study of 218U; a search for the sub-shell closure at Z=92

2006

Neutron-deficient uranium isotopes were studied via α spectroscopic methods. A low-lying α-decaying isomeric state was found in 218U. The new isomeric state was assigned spin and parity I π = 8+. The isomer decays by α emission with an energy E = 10678(17) keV and with a half-life T 1/2 = (0.56 -0.14 +0.26 ) ms. The known alpha-decay properties of the ground state of 218U was measured with improved statistics. The ground-state α-decay has an energy E = 8612(9) keV and a half-life T 1/2 = (0.51 -0.10 +0.17 ) ms.

Isotopes of uranium010308 nuclear & particles physicschemistry.chemical_elementHalf-lifeParity (physics)Uranium01 natural sciences7. Clean energychemistry0103 physical sciencesNeutronAlpha decayAtomic physics010306 general physicsGround stateAIP Conference Proceedings
researchProduct

Uranium from German Nuclear Power Projects of the 1940s— A Nuclear Forensic Investigation

2015

Here we present a nuclear forensic study of uranium from German nuclear projects which used different geometries of metallic uranium fuel. Through measurement of the (230)Th/(234)U ratio, we could determine that the material had been produced in the period from 1940 to 1943. To determine the geographical origin of the uranium, the rare-earth-element content and the (87)Sr/(86)Sr ratio were measured. The results provide evidence that the uranium was mined in the Czech Republic. Trace amounts of (236)U and (239)Pu were detected at the level of their natural abundance, which indicates that the uranium fuel was not exposed to any major neutron fluence.

Isotopes of uraniumbusiness.industryWirtz KarlNuclear forensicsnuclear forensicsRadiochemistrychemistry.chemical_elementGeneral ChemistryActinideNuclear powerUraniumCommunicationsCatalysisuraniumUranium-236chemistryUranium-234Environmental scienceHeisenberg WernerbusinessPlutonium-239mass spectrometryAngewandte Chemie International Edition
researchProduct

Preparation of targets for the gas-filled recoil separator TASCA by electrochemical deposition and design of the TASCA target wheel assembly

2008

Abstract The Transactinide Separator and Chemistry Apparatus (TASCA) is a recoil separator with maximized transmission designed for performing advanced chemical studies as well as nuclear reaction and structure investigations of the transactinide elements ( Z >103) on a one-atom-at-a-time basis. TASCA will provide a very clean transactinide fraction with negligible contamination of lighter elements from nuclear side reactions in the target. For TASCA a new target chamber was designed and built at GSI including the rotating target wheel assembly ARTESIA for beam intensities up to 2 μA (particle). For the production of longer-lived isotopes of neutron-rich heavier actinide and transactinide e…

LanthanidePhysicsNuclear and High Energy PhysicsCuriumAnalytical chemistrychemistry.chemical_elementThoriumTransactinide elementActinideUraniumPlutoniumchemistryNuclear fusionInstrumentationNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

The application of neutron activation analysis, scanning electron microscope, and radiographic imaging for the characterization of electrochemically …

2008

Lanthanide and actinide targets are prepared at the University of Mainz by molecular plating, an electrochemical deposition from an organic solvent, for heavy-ion reaction studies at GSI. To acquire information about deposition yield, target thickness, and target homogeneity, the following analysis methods are applied. With neutron activation analysis (NAA) the deposition yield and the average thickness of the deposited material is determined. We report on the analytical procedure of NAA performed subsequent to the molecular plating process. Scanning electron microscope (SEM) is used to determine the morphology of the target surfaces. In combination with energy dispersive X-ray spectrometer…

LanthanidePhysicsNuclear and High Energy PhysicsScanning electron microscopeGadoliniumAnalytical chemistrychemistry.chemical_elementActinideUraniumSamariumchemistryNeutron activation analysisHolmiumInstrumentationNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Distillation and stripping pilot plants for the JUNO neutrino detector: Design, operations and reliability

2019

Abstract This paper describes the design, construction principles and operations of the distillation and stripping pilot plants tested at the Daya Bay Neutrino Laboratory, with the perspective to adapt these processes, system cleanliness and leak-tightness standards to the final full scale plants to be used for the purification of the liquid scintillator of the JUNO neutrino detector. The main goal of these plants is to remove radio impurities from the liquid scintillator while increasing its optical attenuation length. Purification of liquid scintillator will be performed with a system combining alumina oxide, distillation, water extraction and steam (or N 2 gas) stripping. Such a combined…

Large-scale experimentNuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsLiquid scintillatorAttenuation length; LAB; Large-scale experiments; Light yield; Liquid scintillator; Nitrogen purging; Radiopurity; Scintillator transparency; Nuclear and High Energy Physics; Instrumentationscintillation counter: liquidMixing (process engineering)Full scaleFOS: Physical sciencesRadiopurityfabricationScintillator01 natural sciences7. Clean energyStripping (fiber)law.inventionNOlaw0103 physical sciencesthorium: admixtureAttenuation length; LAB; Large-scale experiments; Light yield; Liquid scintillator; Nitrogen purging; Radiopurity; Scintillator transparency[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsProcess engineeringDistillationInstrumentationbackground: radioactivityNuclear and High Energy PhysicPhysicsLABJUNOLarge-scale experiments010308 nuclear & particles physicsbusiness.industryuranium: admixtureSettore FIS/01 - Fisica SperimentaleAttenuation lengthInstrumentation and Detectors (physics.ins-det)Attenuation lengthNitrogen purgingNeutrino detectorScintillator transparencyNeutrinobusinessaluminum: oxygenLight yield
researchProduct

Strain induced renormalization of transport properties in UPt3 thin films

1996

The growth of sputter deposited UPt3 thin films on Al2O3 (1012), LaAlO3 (111) and SrTiO3 (111) was investigated. We found strongly 0001-textured growth of UPt3 in a small compositional range of 23–25% uranium content. For Al2O3-and LaAlO3-substrates no in-plane order could be observed whereas epitaxial growth was initiated on SrTiO3 (111): The growth can be identified as Vollmer-Weber like resulting in the formation of large lateral strain as a consequence of the growth mode and a lattice misfit of −4.3% between UPt3 (0001) and SrTiO3 (111). Strong deviations from the typical heavy-fermion characteristics in electronic transport properties like resistivity, magnetoresitivity and Hall-effect…

Lateral strainMaterials scienceCondensed matter physicsGeneral Physics and Astronomychemistry.chemical_elementUraniumEpitaxyRenormalizationchemistryElectrical resistivity and conductivitySputteringLattice (order)ddc:530Thin filmCzechoslovak Journal of Physics
researchProduct

Atomic scale DFT simulations of point defects in uranium nitride

2007

Atomic scale density functional calculations are used to predict the behaviour of defects in uranium mononitride (UN). Two different density functional codes (VASP and CASTEP) were employed with supercells containing from 8 to 250 atoms (providing a significant range of defect concentrations). Schottky and nitrogen Frenkel point defect formation energies, local lattice relaxations and overall lattice parameter change, as well as the defect induced electronic density redistribution, are discussed.

Lattice energychemistry.chemical_compoundLattice constantCondensed matter physicsChemistryKröger–Vink notationSchottky defectCASTEPGeneral Materials ScienceCondensed Matter PhysicsCrystallographic defectUranium nitrideElectronic densityJournal of Physics: Condensed Matter
researchProduct

The Design and Sensitivity of JUNO's scintillator radiopurity pre-detector OSIRIS

2021

The European physical journal / C 81(11), 973 (2021). doi:10.1140/epjc/s10052-021-09544-4

Liquid scintillatorPhysics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Physics::Instrumentation and Detectorsscintillation counter: liquidmeasurement methodsQC770-798Astrophysics01 natural sciencesthorium: nuclidedesign [detector]neutrinoRadioactive purityPhysicsLow energy neutrinoJUNOliquid [scintillation counter]biologySettore FIS/01 - Fisica SperimentaleDetectorInstrumentation and Detectors (physics.ins-det)3. Good healthQB460-466Physics::Space Physicsnuclide [uranium]FOS: Physical sciencesScintillatornuclide [thorium]530NONuclear physicsPE2_2uranium: nuclideNuclear and particle physics. Atomic energy. Radioactivity0103 physical sciencesddc:530Sensitivity (control systems)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsJUNO neutrino physics liquid scintillatorEngineering (miscellaneous)background: radioactivitydetector: designMeasurement method010308 nuclear & particles physicsradioactivity [background]biology.organism_classificationsensitivityHigh Energy Physics::ExperimentReactor neutrinoOsiris
researchProduct

Mixed complexes of alkaline earth uranyl cabonates: A laser-induced time-resolved fluorescence spectroscopic study

2008

The interaction of the alkaline earth ions Mg2+, Sr2+ and Ba2+ with the uranyl tricarbonate complex has been studied by time resolved laser-induced fluorescence spectroscopy. In contrast to the non-luminescent uranyl tricarbonate complex the formed products show slight luminescence properties. These have been used to determine the stoichiometry and complex stabilities of the formed compounds. As the alkaline earth elements are located in an outer shell of the complex the influence of the type of the alkaline earth element on the stability constant is not very drastic. Therefore all obtained data were averaged in order to derive an common stability constant for the described complexes. These…

LuminescenceLightAnalytical chemistryCarbonateschemistry.chemical_elementFluorescence spectroscopyAnalytical ChemistryPhosphatesuraniumchemistry.chemical_compoundAlkaline earth elementscarbonatecomplex formationluminescenceMagnesiumInstrumentationSpectroscopyIonsAlkaline earth metalModels StatisticalTemperatureBariumHydrogen-Ion ConcentrationUranylAtomic and Molecular Physics and OpticsCarbonSpectrometry FluorescencechemistryStability constants of complexesBariumStrontiumUraniumTime-resolved spectroscopyLuminescenceStoichiometry
researchProduct

Risk of Lung Cancer Mortality in Nuclear Workers from Internal Exposure to Alpha Particle-emitting Radionuclides

2017

Supplemental Digital Content is available in the text.

MaleLung NeoplasmsEpidemiology[SDV]Life Sciences [q-bio]chemistry.chemical_elementRadonSubstàncies radioactivesExtraction and Processing Industry030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicineBelgiumRisk FactorsEnvironmental healthOccupational ExposureMortalitatMedicineHumansLung Neoplasms/mortality; Neoplasms Radiation-Induced/mortality; Occupational Diseases/mortality; Radiation Exposure/adverse effectsMortalityLung cancerRadiometryCarcinogenCancerAgedRadionuclidebusiness.industryAlpha particleMiddle Agedmedicine.diseaseAlpha ParticlesPlutoniumUnited Kingdom3. Good healthchemistry030220 oncology & carcinogenesisCase-Control StudiesComputingMethodologies_DOCUMENTANDTEXTPROCESSINGCàncer de pulmóUraniumFemaleOccupational exposureFranceLung cancerbusinessNuclear medicineRadioactive substances
researchProduct