Search results for "vacuum"
showing 10 items of 352 documents
ON QUANTUM GRAVITY, ASYMPTOTIC SAFETY AND PARAMAGNETIC DOMINANCE
2012
We discuss the conceptual ideas underlying the Asymptotic Safety approach to the nonperturbative renormalization of gravity. By now numerous functional renormalization group studies predict the existence of a suitable nontrivial ultraviolet fixed point. We use an analogy to elementary magnetic systems to uncover the physical mechanism behind the emergence of this fixed point. It is seen to result from the dominance of certain paramagnetic-type interactions over diamagnetic ones. Furthermore, the spacetimes of Quantum Einstein Gravity behave like a polarizable medium with a "paramagnetic" response to external perturbations. Similarities with the vacuum state of Yang-Mills theory are pointed …
Cosmology with self-adjusting vacuum energy density from a renormalization group fixed point
2001
Cosmologies with a time dependent Newton constant and cosmological constant are investigated. The scale dependence of $G$ and $\Lambda$ is governed by a set of renormalization group equations which is coupled to Einstein's equation in a consistent way. The existence of an infrared attractive renormalization group fixed point is postulated, and the cosmological implications of this assumption are explored. It turns out that in the late Universe the vacuum energy density is automatically adjusted so as to equal precisely the matter energy density, and that the deceleration parameter approaches $q = -1/4$. This scenario might explain the data from recent observations of high redshift type Ia S…
N-quantum approach to quantum field theory at finite T and mu: the NJL model
1999
We extend the N-quantum approach to quantum field theory to finite temperature ($T$) and chemical potential ($\mu$) and apply it to the NJL model. In this approach the Heisenberg fields are expressed using the Haag expansion while temperature and chemical potential are introduced simultaneously through a generalized Bogoliubov transformation. Known mean field results are recovered using only the first term in the Haag expansion. In addition, we find that at finite T and in the broken symmetry phase of the model the mean field approximation can not diagonalize the Hamiltonian. Inclusion of scalar and axial vector diquark channels in the SU(2)$_{rm f}$ $otimes$ SU(3)$_{\rm c}$ version of the …
Gauge and Yukawa unification with broken R-parity
1998
We study gauge and Yukawa coupling unification in the simplest extension of the Minimal Supersymmetric Standard Model (MSSM) which incorporates R-Parity violation through a bilinear superpotential term. Contrary to what happens in the MSSM, we show that bottom-tau unification at the scale M_GUT where the gauge couplings unify can be achieved for any value of tan(beta) by choosing appropriately the sneutrino vacuum expectation value. In addition, we show that bottom-tau-top unification occurs in a slightly wider tan(beta) range than in the MSSM.
Acceleration radiation and the Planck scale
2008
A uniformly accelerating observer perceives the Minkowski vacuum state as a thermal bath of radiation. We point out that this field-theory effect can be derived, for any dimension higher than two, without actually invoking very high energy physics. This supports the view that this phenomenon is robust against Planck-scale physics and, therefore, should be compatible with any underlying microscopic theory.
Spatial correlations of field observables in two half-spaces separated by a movable perfect mirror
2023
We consider a system of two cavities separated by a reflecting boundary of finite mass that is free to move, and bounded to its equilibrium position by a harmonic potential. This yields an effective mirror-field interaction, as well as an effective interaction between the field modes mediated by the movable boundary. Two massless scalar fields are defined in each cavity. We consider the second-order interacting ground state of the system, that contains virtual excitations of both mirror's degrees of freedom and of the scalar fields. We investigate the correlation functions between field observables in the two cavities, and find that the squared scalar fields in the two cavities, in the inte…
Space and Time Averaged Quantum Stress Tensor Fluctuations
2021
We extend previous work on the numerical diagonalization of quantum stress tensor operators in the Minkowski vacuum state, which considered operators averaged in a finite time interval, to operators averaged in a finite spacetime region. Since real experiments occur over finite volumes and durations, physically meaningful fluctuations may be obtained from stress tensor operators averaged by compactly supported sampling functions in space and time. The direct diagonalization, via a Bogoliubov transformation, gives the eigenvalues and the probabilities of measuring those eigenvalues in the vacuum state, from which the underlying probability distribution can be constructed. For the normal-orde…
Method to compute the stress-energy tensor for a quantized scalar field when a black hole forms from the collapse of a null shell
2020
A method is given to compute the stress-energy tensor for a massless minimally coupled scalar field in a spacetime where a black hole forms from the collapse of a spherically symmetric null shell in four dimensions. Part of the method involves matching the modes for the in vacuum state to a complete set of modes in Schwarzschild spacetime. The other part involves subtracting from the unrenormalized expression for the stress-energy tensor when the field is in the in vacuum state, the corresponding expression when the field is in the Unruh state and adding to this the renormalized stress-energy tensor for the field in the Unruh state. The method is shown to work in the two-dimensional case wh…
Oh, wait, O8 de Sitter may be unstable!
2021
We analyze the stability of four-dimensional de Sitter vacua constructed by compactifying massive Type IIA supergravity in the presence of two O8 sources [1]. When embedded in String Theory the first source has a clear interpretation as an O8$_-$ plane, but the second one could correspond to either an O8$_+$ plane or to an O8$_-$ plane with 16 D8-branes on top. We find that this latter solution has a tachyonic instability, corresponding to the D8-branes moving away from the O8$_-$ plane. We comment on the possible ways of distinguishing between these sources.
Multi-boson block factorization of fermions
2017
The numerical computations of many quantities of theoretical and phenomenological interest are plagued by statistical errors which increase exponentially with the distance of the sources in the relevant correlators. Notable examples are baryon masses and matrix elements, the hadronic vacuum polarization and the light-by-light scattering contributions to the muon g-2, and the form factors of semileptonic B decays. Reliable and precise determinations of these quantities are very difficult if not impractical with state-of-the-art standard Monte Carlo integration schemes. I will review a recent proposal for factorizing the fermion determinant in lattice QCD that leads to a local action in the g…