Search results for "video processing"

showing 10 items of 56 documents

Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods

2019

An unprecedented spectroscopic data stream will soon become available with forthcoming Earth-observing satellite missions equipped with imaging spectroradiometers. This data stream will open up a vast array of opportunities to quantify a diversity of biochemical and structural vegetation properties. The processing requirements for such large data streams require reliable retrieval techniques enabling the spatiotemporally explicit quantification of biophysical variables. With the aim of preparing for this new era of Earth observation, this review summarizes the state-of-the-art retrieval methods that have been applied in experimental imaging spectroscopy studies inferring all kinds of vegeta…

Data streamEarth observation010504 meteorology & atmospheric sciencesComputer scienceUT-Hybrid-D010502 geochemistry & geophysicscomputer.software_genreQuantitative Biology - Quantitative Methods01 natural sciencesArticleGeochemistry and PetrologyFOS: Electrical engineering electronic engineering information engineeringQuantitative Methods (q-bio.QM)0105 earth and related environmental sciencesParametric statisticsData stream miningImage and Video Processing (eess.IV)Electrical Engineering and Systems Science - Image and Video Processing15. Life on land22/4 OA procedureRegressionImaging spectroscopyGeophysicsSpectroradiometer13. Climate actionMulticollinearityFOS: Biological sciencesITC-ISI-JOURNAL-ARTICLEData miningcomputerSurveys in Geophysics
researchProduct

Capturing and Indexing Rehearsals: The Design and Usage of a Digital Archive of Performing Arts

2015

International audience; Preserving the cultural heritage of the performing arts raises difficult and sensitive issues, as each performance is unique by nature and the juxtaposition between the performers and the audience cannot be easily recorded. In this paper, we report on an experimental research project to preserve another aspect of the performing arts—the history of their rehearsals. We have specifically designed non-intrusive video recording and on-site documentation techniques to make this process transparent to the creative crew, and have developed a complete workflow to publish the recorded video data and their corresponding meta-data online as Open Data using state-of-the-art audi…

Digital archivingComputer science[ INFO.INFO-WB ] Computer Science [cs]/Web02 engineering and technology[ INFO.INFO-CV ] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]computer.software_genre[SHS.MUSEO]Humanities and Social Sciences/Cultural heritage and museologyvideo processingWorld Wide WebDocumentationopera11. Sustainability0202 electrical engineering electronic engineering information engineeringAudio signal processing[ INFO.INFO-MM ] Computer Science [cs]/Multimedia [cs.MM]HypervideoMultimediahypervideo[INFO.INFO-WB]Computer Science [cs]/Web[INFO.INFO-MM]Computer Science [cs]/Multimedia [cs.MM][INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]020207 software engineering[ MATH.MATH-NA ] Mathematics [math]/Numerical Analysis [math.NA]Video processingLinked dataperforming artsaudio processingCultural heritageWorkflowtheaterLinked Data[ SHS.MUSEO ] Humanities and Social Sciences/Cultural heritage and museology020201 artificial intelligence & image processingPerforming artscomputer[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]
researchProduct

Portable Video Supercomputing

2004

As inexpensive imaging chips and wireless telecommunications are incorporated into an increasing array, of portable products, the need for high efficiency, high throughput embedded processing will become an important challenge in computer architecture. Videocentric applications, such wireless videoconferencing, real-time video enhancement and analysis, and new, immersive modes of distance education, will exceed the computational capabilities of current microprocessor and digital signal processor (DSP) architectures. A new class of embedded computers, portable video supercomputers, will combine supercomputer performance with the energy efficiency required for deployment in portable systems. …

Digital signal processorComputer scienceData parallelismVideo processingSupercomputerTheoretical Computer ScienceMicroarchitectureMPEG encodinglaw.inventionMicroprocessorComputational Theory and MathematicsComputer architectureHardware and ArchitecturelawSIMDSoftware
researchProduct

A real-time non-intrusive FPGA-based drowsiness detection system

2011

Automotive has gained several benefits from the Ambient Intelligent researches involving the deployment of sensors and hardware devices into an intelligent environment surrounding people, meeting users’ requirements and anticipating their needs. One of the main topics in automotive is to anticipate driver needs and safety, in terms of preventing critical and dangerous events. Considering the high number of caused accidents, one of the most relevant dangerous events affecting driver and passengers safety is driver’s drowsiness and hypovigilance. This paper presents a low-intrusive, real-time driver’s drowsiness detection system for common vehicles. The proposed system exploits the ‘‘bright p…

Drowsiness detection systemSettore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniGeneral Computer ScienceComputer sciencebusiness.industryFrame (networking)Real-time computingAutomotive industryProcess (computing)Advanced driver assistance systemsImage processingDriver assistance systemReal-time image and video processingFPGA based prototypingEmbedded systemIntelligent environmentField-programmable gate arraybusinessJournal of Ambient Intelligence and Humanized Computing
researchProduct

Spectral band selection for vegetation properties retrieval using Gaussian processes regression

2020

Abstract With current and upcoming imaging spectrometers, automated band analysis techniques are needed to enable efficient identification of most informative bands to facilitate optimized processing of spectral data into estimates of biophysical variables. This paper introduces an automated spectral band analysis tool (BAT) based on Gaussian processes regression (GPR) for the spectral analysis of vegetation properties. The GPR-BAT procedure sequentially backwards removes the least contributing band in the regression model for a given variable until only one band is kept. GPR-BAT is implemented within the framework of the free ARTMO's MLRA (machine learning regression algorithms) toolbox, w…

FOS: Computer and information sciences010504 meteorology & atmospheric sciencesComputer Vision and Pattern Recognition (cs.CV)0211 other engineering and technologiesComputer Science - Computer Vision and Pattern Recognition02 engineering and technologyManagement Monitoring Policy and Law01 natural sciencesStatistics - Applicationssymbols.namesakeFOS: Electrical engineering electronic engineering information engineeringApplications (stat.AP)Computers in Earth SciencesGaussian processHyMap021101 geological & geomatics engineering0105 earth and related environmental sciencesEarth-Surface ProcessesRemote sensingGlobal and Planetary ChangeImage and Video Processing (eess.IV)Hyperspectral imagingRegression analysisVegetationSpectral bands15. Life on landElectrical Engineering and Systems Science - Image and Video ProcessingRegressionGeographyGround-penetrating radarsymbolsInternational Journal of Applied Earth Observation and Geoinformation
researchProduct

Flood Detection On Low Cost Orbital Hardware

2019

Satellite imaging is a critical technology for monitoring and responding to natural disasters such as flooding. Despite the capabilities of modern satellites, there is still much to be desired from the perspective of first response organisations like UNICEF. Two main challenges are rapid access to data, and the ability to automatically identify flooded regions in images. We describe a prototypical flood segmentation system, identifying cloud, water and land, that could be deployed on a constellation of small satellites, performing processing on board to reduce downlink bandwidth by 2 orders of magnitude. We target PhiSat-1, part of the FSSCAT mission, which is planned to be launched by the …

FOS: Computer and information sciences: Computer science [C05] [Engineering computing & technology]Computer Science - Machine LearningImage and Video Processing (eess.IV): Multidisciplinary general & others [C99] [Engineering computing & technology]Machine Learning (stat.ML)Image and Video ProcessingElectrical Engineering and Systems Science - Image and Video Processing: Sciences informatiques [C05] [Ingénierie informatique & technologie]Machine Learning (cs.LG)Machine Learning: Multidisciplinaire généralités & autres [C99] [Ingénierie informatique & technologie]Artificial IntelligenceStatistics - Machine LearningSmall SatellitesFOS: Electrical engineering electronic engineering information engineeringFlood detectionEarth Observation: Aerospace & aeronautics engineering [C01] [Engineering computing & technology]: Ingénierie aérospatiale [C01] [Ingénierie informatique & technologie]
researchProduct

Cross-Sensor Adversarial Domain Adaptation of Landsat-8 and Proba-V images for Cloud Detection

2021

The number of Earth observation satellites carrying optical sensors with similar characteristics is constantly growing. Despite their similarities and the potential synergies among them, derived satellite products are often developed for each sensor independently. Differences in retrieved radiances lead to significant drops in accuracy, which hampers knowledge and information sharing across sensors. This is particularly harmful for machine learning algorithms, since gathering new ground truth data to train models for each sensor is costly and requires experienced manpower. In this work, we propose a domain adaptation transformation to reduce the statistical differences between images of two…

FOS: Computer and information sciencesAtmospheric ScienceComputer Science - Machine LearningGenerative adversarial networks010504 meteorology & atmospheric sciencesComputer scienceRemote sensing applicationdomain adaptationGeophysics. Cosmic physics0211 other engineering and technologiesCloud computing02 engineering and technologycomputer.software_genre01 natural sciencesImage (mathematics)Data modelingMachine Learning (cs.LG)convolutional neural networksFOS: Electrical engineering electronic engineering information engineeringLandsat-8Computers in Earth SciencesAdaptation (computer science)TC1501-1800021101 geological & geomatics engineering0105 earth and related environmental sciencesbusiness.industryQC801-809Image and Video Processing (eess.IV)Electrical Engineering and Systems Science - Image and Video ProcessingOcean engineeringTransformation (function)cloud detectionSatelliteData miningProba-VTransfer of learningbusinesscomputer
researchProduct

Learning User's Confidence for Active Learning

2013

In this paper, we study the applicability of active learning in operative scenarios: more particularly, we consider the well-known contradiction between the active learning heuristics, which rank the pixels according to their uncertainty, and the user's confidence in labeling, which is related to both the homogeneity of the pixel context and user's knowledge of the scene. We propose a filtering scheme based on a classifier that learns the confidence of the user in labeling, thus minimizing the queries where the user would not be able to provide a class for the pixel. The capacity of a model to learn the user's confidence is studied in detail, also showing the effect of resolution is such a …

FOS: Computer and information sciencesComputer Science - Machine LearningActive learning (machine learning)Computer scienceComputer Vision and Pattern Recognition (cs.CV)SVM0211 other engineering and technologiesComputer Science - Computer Vision and Pattern RecognitionContext (language use)02 engineering and technologyMachine learningcomputer.software_genreTask (project management)Machine Learning (cs.LG)Classifier (linguistics)0202 electrical engineering electronic engineering information engineeringFOS: Electrical engineering electronic engineering information engineeringbad statesElectrical and Electronic Engineeringphotointerpretationuser's confidence021101 geological & geomatics engineeringActive learning (AL)Pixelbusiness.industryRank (computer programming)Image and Video Processing (eess.IV)very high resolution (VHR) imagery020206 networking & telecommunicationsElectrical Engineering and Systems Science - Image and Video ProcessingClass (biology)General Earth and Planetary SciencesArtificial intelligenceHeuristicsbusinesscomputerIEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
researchProduct

Efficient Nonlinear RX Anomaly Detectors

2020

Current anomaly detection algorithms are typically challenged by either accuracy or efficiency. More accurate nonlinear detectors are typically slow and not scalable. In this letter, we propose two families of techniques to improve the efficiency of the standard kernel Reed-Xiaoli (RX) method for anomaly detection by approximating the kernel function with either {\em data-independent} random Fourier features or {\em data-dependent} basis with the Nystr\"om approach. We compare all methods for both real multi- and hyperspectral images. We show that the proposed efficient methods have a lower computational cost and they perform similar (or outperform) the standard kernel RX algorithm thanks t…

FOS: Computer and information sciencesComputer Science - Machine LearningBasis (linear algebra)Computer scienceComputer Vision and Pattern Recognition (cs.CV)Image and Video Processing (eess.IV)Computer Science - Computer Vision and Pattern Recognition0211 other engineering and technologiesApproximation algorithmHyperspectral imaging02 engineering and technologyElectrical Engineering and Systems Science - Image and Video ProcessingGeotechnical Engineering and Engineering GeologyRegularization (mathematics)Machine Learning (cs.LG)Nonlinear systemKernel (linear algebra)Kernel (statistics)FOS: Electrical engineering electronic engineering information engineeringAnomaly detectionElectrical and Electronic EngineeringAnomaly (physics)Algorithm021101 geological & geomatics engineeringIEEE Geoscience and Remote Sensing Letters
researchProduct

Local-Area-Learning Network: Meaningful Local Areas for Efficient Point Cloud Analysis

2020

Research in point cloud analysis with deep neural networks has made rapid progress in recent years. The pioneering work PointNet offered a direct analysis of point clouds. However, due to its architecture PointNet is not able to capture local structures. To overcome this drawback, the same authors have developed PointNet++ by applying PointNet to local areas. The local areas are defined by center points and their neighbors. In PointNet++ and its further developments the center points are determined with a Farthest Point Sampling (FPS) algorithm. This has the disadvantage that the center points in general do not have meaningful local areas. In this paper, we introduce the neural Local-Area-L…

FOS: Computer and information sciencesComputer Science - Machine LearningComputer Vision and Pattern Recognition (cs.CV)Image and Video Processing (eess.IV)Computer Science - Computer Vision and Pattern RecognitionFOS: Electrical engineering electronic engineering information engineeringElectrical Engineering and Systems Science - Image and Video ProcessingMachine Learning (cs.LG)
researchProduct