Search results for "wave function"
showing 10 items of 395 documents
Study of the structure of the Hoyle state by refractive α-scattering
2014
α + 12C elastic and inelastic to the Hoyle state (0+ 2, 7.65 MeV) differential cross-sections were measured at the energies 60 and 65 MeV with the aim of testing the microscopic wave function [1] widely used in modern structure calculations of 12C. Deep rainbow (Airy) minima were observed in all four curves. The minima in the inelastic angular distributions are shifted to the larger angles relatively those in the elastic ones, which testify the radius enhancement of the Hoyle state. In general, the DWBA calculations failed to reproduce the details of the cross sections in the region of the rainbow minima in the inelastic scattering data. However, by using the phenomenological density with r…
Polarons in thet-J model
1991
A convenient form of the Peierls-Hubbard Hamiltonian is obtained for the case when the Hubbard repulsion is the largest energy parameter. It allows to consider in the spin-wave approximation the properties of the one-hole low-lying excitations of a 2d lattice. For the parameters approximately corresponding to La2CuO4 it is shown that the hole polarons in the CuO2 planes of lightly doped samples are of large size with a solitonlike-shaped highly asymmetric wave function oriented along the diagonals of the planes or of small size depending on the value of the electron-phonon coupling. In both cases the cooperative effect of the electron-phonon and electron-magnon interactions leads to a large…
Generalization of the atomic random-phase-approximation method for diatomic molecules:N2photoionization cross-section calculations
2000
Partial and total photoionization cross sections of ${\mathrm{N}}_{2}$ molecule are calculated using the generalization of the random-phase approximation (RPA) which earlier has been successfully applied to the description of the atomic photoionization processes. According to this method, at first the Hartree-Fock (HF) ground-state wave functions are calculated in prolate spheroidal coordinates using the fixed-nuclei approximation. With their help the zero order basis set of single particle Hartree-Fock wave functions containing both discrete excited states and continuous spectrum is calculated in the field of a frozen core of a singly charged ion. The calculations are performed for all fou…
β -decay rates of Rh115,117 into Pd115,117 isotopes in the microscopic interacting boson-fermion model
2020
The structure of odd-$A ^{115,117}\mathrm{Rh}$ and $^{115,117}\mathrm{Pd}$ isotopes is studied by means of the neutron-proton interacting boson-fermion model (IBFM-2). ${J}^{P}={\frac{1}{2}}^{+}$ quantum number assignment for the $^{115,117}\mathrm{Pd}$ ground states is critically discussed and the predicted energy levels are compared to the existing experimental data. The resulting nuclear wave functions are used to compute the $\ensuremath{\beta}$-decay $ft$ values of the transitions from $^{115,117}\mathrm{Rh}$ to $^{115,117}\mathrm{Pd}$ in the microscopic IBFM-2 and the results compared with the data.
Neutral-current supernova-neutrino cross sections for Pb204,206,208 calculated by Skyrme quasiparticle random-phase approximation
2019
The present work constitutes a detailed study of neutral-current (NC) supernova-neutrino scattering off the stable even-even lead isotopes Pb204,206,208. This is a continuation of our previous work [Almosly et al., Phys. Rev. C. 94, 044614 (2016)10.1103/PhysRevC.94.044614] where we investigated charged-current processes on the same nuclei. As in the previous work, we have adopted the quasiparticle random-phase approximation (QRPA) as the theory framework and use three different Skyrme interactions to build the involved nuclear wave functions. We test the Skyrme forces by computing the location of the lowest-order isovector spin-multipole giant resonances and comparing with earlier calculati…
Isotope shifts and nuclear-charge radii in singly ionizedCa40–48
1992
The isotope shifts in the resonance lines 4${\mathit{s}}_{1/2}$\ensuremath{\rightarrow}4${\mathit{p}}_{1/2,3/2}$ in Ca ii have been measured for the isotopes $^{40\mathrm{\ensuremath{-}}48}\mathrm{Ca}$ by fast-ion-beam collinear laser spectroscopy. Atomic many-body perturbation theory was then used to calculate the electronic factor for the field shift, giving F=-285(3) MHz/${\mathrm{fm}}^{2}$. The estimate of the uncertainty in F is based on the agreement at the level of 1% for the 4s and 4p hyperfine structures obtained using the same wave functions which include core polarization and pair correlation to all orders. The theoretical value is in excellent agreement with the result F=-283(6)…
Microscopic and translationally-invariant calculations with tensor forces and tensor correlations
1999
In this paper we discuss an approach to the ab initio study of ground states of light nuclei using realistic forces. The method constructs trial variational wavefunctions by superimposing state-dependent translationally-invariant pair correlations on a state-independent Jastrow-correlated wavefunction, with very promising results.
Collinear Resonance Ionization Spectroscopy of Neutron-Deficient Francium Isotopes
2013
The magnetic moments and isotope shifts of the neutron-deficient francium isotopes 202-205Fr were measured at ISOLDE-CERN with use of collinear resonance ionization spectroscopy. A production-to-detection efficiency of 1% was measured for 202Fr. The background from nonresonant and collisional ionization was maintained below one ion in 105 beam particles. Through a comparison of the measured charge radii with predictions from the spherical droplet model, it is concluded that the ground-state wave function remains spherical down to 205Fr, with a departure observed in 203Fr (N = 116). ispartof: Physical Review Letters vol:111 issue:21 pages:212501-4 ispartof: location:United States status: pub…
Spin projected unrestricted Hartree-Fock ground states for harmonic quantum dots
2008
We report results for the ground state energies and wave functions obtained by projecting spatially unrestricted Hartree Fock states to eigenstates of the total spin and the angular momentum for harmonic quantum dots with $N\leq 12$ interacting electrons including a magnetic field states with the correct spatial and spin symmetries have lower energies than those obtained by the unrestricted method. The chemical potential as a function of a perpendicular magnetic field is obtained. Signature of an intrinsic spin blockade effect is found.
Electromagnetic Multipole Moments and Transitions
2007
In the preceding chapter we constructed and discussed the simplest possible nuclear wave functions. This construction was done at the mean-field level. No account was taken of configuration mixing caused by the nuclear residual interaction. These simple wave functions produce degeneracies in energy spectra. This is contrary to experimental data, so improved wave functions are called for.