Search results for "wave function"
showing 10 items of 395 documents
Proton Decay of an Intruder State inB185i
1996
The new proton radioactivity ${}^{185m}\mathrm{Bi}$ has been observed, produced via the ${}^{95}\mathrm{Mo}{(}^{92}\mathrm{Mo},pn{)}^{185}\mathrm{Bi}$ reaction. Its decay proceeds from the low-lying ${\frac{1}{2}}^{+}$ intruder state in ${}^{185}\mathrm{Bi}$ to the ${}^{184}\mathrm{Pb}$ ground state with the emission of a proton of energy $1.585\ifmmode\pm\else\textpm\fi{}0.009\mathrm{MeV}$ and a half-life of $44\ifmmode\pm\else\textpm\fi{}16\ensuremath{\mu}\mathrm{s}$. This marks the first observation of proton radioactivity above the $Z\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}82$ closed shell, and it has been used to obtain the admixture of a ${0}^{+}$ intruder state in ${}^{184…
High-quality variational wave functions for small4Heclusters
1999
We report a variational calculation of ground state energies and radii of ${}^{4}{\mathrm{He}}_{N}$ droplets $(3l~Nl~40),$ using the Aziz HFD-B (HE) atom-atom interaction. The trial wave function has a simple structure, combining two- and three-body correlation functions coming from a translationally invariant configuration-interaction description, and Jastrow-type short-range correlations. The calculated ground state energies differ by around 2% from the diffusion Monte Carlo results.
Lindblad- and non-Lindblad-type dynamics of a quantum Brownian particle
2004
The dynamics of a typical open quantum system, namely a quantum Brownian particle in a harmonic potential, is studied focussing on its non-Markovian regime. Both an analytic approach and a stochastic wave function approach are used to describe the exact time evolution of the system. The border between two very different dynamical regimes, the Lindblad and non-Lindblad regimes, is identified and the relevant physical variables governing the passage from one regime to the other are singled out. The non-Markovian short time dynamics is studied in detail by looking at the mean energy, the squeezing, the Mandel parameter and the Wigner function of the system.
Quantum theory of heating of a single trapped ion
2003
The heating of trapped ions due to the interaction with a {\it quantized environment} is studied {\it without performing the Born-Markov approximation}. A generalized master equation local in time is derived and a novel theoretical approach to solve it analytically is proposed. Our master equation is in the Lindblad form with time dependent coefficients, thus allowing the simulation of the dynamics by means of the Monte Carlo Wave Function (MCWF) method.
A scheme for entanglement extraction from a solid
2006
Some thermodynamical properties of solids, such as heat capacity and magnetic susceptibility, have recently been shown to be linked to the amount of entanglement in a solid. However this entanglement may appear a mere mathematical artifact of the typical symmetrization procedure of many-body wave function in solid state physics. Here we show that this entanglement is physical demonstrating the principles of its extraction from a typical solid state system by scattering two particles off the system. Moreover we show how to simulate this process using present-day optical lattices technology. This demonstrates not only that entanglement exists in solids but also that it can be used for quantum…
Effective Field Theories in a Finite Volume
2018
In this talk I present the formalism we have used to analyze Lattice data on two meson systems by means of effective field theories. In particular I present the results obtained from a reanalysis of the lattice data on the $KD^{(*)}$ systems, where the states $D^*_{s0}(2317)$ and $D^*_{s1}(2460)$ are found as bound states of $KD$ and $KD^*$, respectively. We confirm the presence of such states in the lattice data and determine the contribution of the $KD$ channel in the wave function of $D^*_{s0}(2317)$ and that of $KD^*$ in the wave function of $D^*_{s1}(2460)$. Our findings indicate a large meson-meson component in the two cases.
An analysis of the Lattice QCD spectra for $D^*_{s0}(2317)$ and $D^*_{s1}(2460)$
2018
In this talk I present the results obtained using effective field theories in a finite volume from a reanalysis of lattice data on the $KD^{(*)}$ systems, where bound states of $KD$ and $KD^*$ are found and associated with the states $D^*_{s0}(2317)$ and $D^*_{s1}(2460)$, respectively. We confirm the presence of such states on the lattice data and determine the weight of the $KD$ channel in the wave function of $D^*_{s0}(2317)$ and that of $KD^*$ in the wave function of $D^*_{s1}(2460)$. Our results indicate a large meson-meson component in both cases.
QCD sum rules for heavy baryons
2001
We construct the heavy baryonic currents by using the Bethe-Salpeter wave functions in the heavy quark limit. We discuss the one-loop renormalization of these heavy baryonic currents as well as their two-point correlators up to the order $1/M_h$. For a special case, we do the QCD sum rule for masses of the doublet (3/2,5/2).
SIMPRE1.2: Considering the hyperfine and quadrupolar couplings and the nuclear spin bath decoherence
2016
SIMPRE is a fortran77code which uses an effective electrostatic model of point charges to predict the magnetic behavior of rare-earth-based mononuclear complexes. In this manuscript, we present SIMPRE1.2, which now takes into account two further phenomena.Firstly, SIMPRE now considers the hyperfine and quadrupolar interactions within the rare-earth ion, resulting in a more complete and realistic set of energy levels and wave functions. Secondly,and in order to widen SIMPRE’s predictive capabilities regarding potential molecular spin qubits, it now includes a routine that calculates an upper-bound estimate of the decoherence time considering only the dipolar coupling between the electron spi…
Wave Packet Decoherence in Momentum Space
2004
We consider the development of decoherence between the momentum components of a wave packet of a non relativistic charged particle interacting linearly with the electromagnetic field in equilibrium at temperature T. By adopting from the beginning the electric dipole approximation the Hamiltonian assumes a form analogous to the one used in the context of quantum computing for an ensemble of two level systems. We obtain the characteristic vacuum and thermal decoherence times and we show that decoherence between different momenta is due to the onset of a correlation between each momentum component and the associated transverse photons that are also responsible of mass renormalization.