Search results for "waveguides"

showing 10 items of 64 documents

Phase-delayed laser diode array allows ultrasonic guided wave mode selection and tuning

2013

Selecting and tuning modes are useful in ultrasonic guided wave non-destructive testing (NDT) since certain modes at various center frequencies are sensitive to specific types of defects. Ideally one should be able to select both the mode and the center frequency of the launched waves. We demonstrated that an affordable laser diode array can selectively launch either the S0 or A0 ultrasonic wave mode at a chosen center frequency into a polymer plate. A fiber-coupled diode array (4 elements) illuminated a 2 mm thick acrylic plate. A predetermined time delay matching the selected mode and frequency was employed between the output of the elements. The generated ultrasound was detected by a 215…

nondestructive testingplates (structures)delayssemiconductor laser arraysacoustic receiversoptical fibre couplersacoustic waveguidesultrasonic wavespolymeeritlaser modeslaser tuning
researchProduct

Titanium Dioxide Waveguides for Data Transmissions at 1.55 µm and 1.98 µm

2017

International audience; We demonstrate error free transmissions of 10 Gbps signals in titanium dioxide waveguides at wavelengths of 1.55 or 2 µm. An efficient coupling of light is achieved thanks to metal grating couplers and we have checked that the component could be used with standard CWDM SFP+ devices.

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]Materials scienceOptical fiberchemistry.chemical_element02 engineering and technology7. Clean energy01 natural scienceslaw.invention010309 opticschemistry.chemical_compound020210 optoelectronics & photonicsOpticslawWavelength-division multiplexing0103 physical sciences0202 electrical engineering electronic engineering information engineeringmetal grating couplersCoupling[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryMetal gratingWavelengthchemistryTitanium dioxideIntegrated opticsbusinessmid-infrared telecommunicationsTitanium Dioxide waveguidesTitanium
researchProduct

Experimental demonstration and numerical study of plasmon-soliton waves

2019

Merging the fields of plasmonics and nonlinear optics authorizes a variety of fascinating and original physical phenomena. In this work, we specifically study the combination of the strong light confinement ability of surface plasmon polaritons (SPP) with the beam self-trapping effect in a nonlinear optical Kerr medium. Although this idea of plasmon-soliton has been the subject of numerous theoretical papers since the eighties [1–4], up to now, no experimental evidence had been revealed yet. In the present study, a proper structure (Fig. 1a) has been designed and fabricated allowing the first experimental demonstration of these hybrid nonlinear waves merging spatial solitons and SPP. To be …

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]slab waveguidePhysics::Optics02 engineering and technology01 natural sciencesnonlinear waveguideslaw.invention010309 opticsmodellingKerr effetOpticslaw0103 physical sciencesplasmon-soliton waveschalcogneideself-focusingPlasmonPhysics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryNonlinear opticsspatial solitonsSelf-focusing021001 nanoscience & nanotechnologyLaserPolarization (waves)Surface plasmon polaritonLight intensityFemtosecond0210 nano-technologybusiness
researchProduct

Multipactor Mitigation in Coaxial Lines by Means of Permanent Magnets

2014

The main aim of this paper is the analysis of the feasibility of employing permanent magnets for the multipactor mitigation in a coaxial waveguide. First, the study of a coaxial line immersed in a uniform axial magnetic field shows that multipactor can be suppressed at any RF if the external magnetic field is strong enough. Both theoretical simulations and experimental tests validate this statement. Next, multipactor breakdown of a coaxial line immersed in a hollow cylindrical permanent magnet is analyzed. Numerical simulations show that multipactor can be suppressed in a certain RF range. The performed experimental test campaign demonstrates the capability of the magnet to avoid the multip…

Multipactor effectMaterials scienceElectron multiplicationbusiness.industryElectrical engineeringRF breakdownPACTORAccelerators and Storage RingsElectronic Optical and Magnetic MaterialsMagnetic fieldPermanent magnetOpticsDC magnetic fieldMagnetTEORIA DE LA SEÑAL Y COMUNICACIONESCoaxial waveguidesCoaxial lineMultipactor effectCoaxial waveguideElectrical and Electronic EngineeringMultipactor mitigationbusinessIEEE Transactions on Electron Devices
researchProduct

Temperature Sensor Based on Colloidal Quantum Dots PMMA Nanocomposite Waveguides

2012

In this paper, integrated temperature sensors based on active nanocomposite planar waveguides are presented. The nanocomposites consist of cadmium selenide (CdSe) and cadmium telluride (CdTe) quantum dots (QDs) embedded in a polymethylmethacrylate (PMMA) matrix. When the samples are heated in a temperature range from 25$^{circ}{rm C}$ to 50 $^{circ}{rm C}$, the waveguided photoluminescence of QDs suffers from a strong intensity decrease, which is approximately quadratic dependent on temperature. Moreover, the wavelength peak of the waveguided emission spectrum of CdTe-PMMA shows a blue shift of 0.25 ${rm nm}/^{circ}{rm C}$, whereas it remains constant in the case of CdSe-PMMA. A temperature…

Materials sciencePhotoluminescencePhysics::Medical PhysicsPhysics::OpticsNanocompositesCondensed Matter::Materials Sciencechemistry.chemical_compoundTEORIA DE LA SEÑAL Y COMUNICACIONESColloidal quantum dots (QDs)Temperature sensorsEmission spectrumElectrical and Electronic EngineeringInstrumentationPolymethylmethacrylate (PMMA)Cadmium selenideCondensed Matter::Otherbusiness.industryQuantum dotsAtmospheric temperature rangeCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCadmium telluride photovoltaicsBlueshiftOptical waveguideschemistryQuantum dotTemperature dependenceOptoelectronicsbusinessIntensity (heat transfer)
researchProduct

Wideband modeling of cascaded H-plane waveguide junctions using the generalised impedance matrix representation

2009

A strong interest in H-plane waveguide components composed of a large number of cascaded planar junctions is recently renewed. Therefore, the more efficient development of full-wave analysis tools of such devices is again receiving consideration, specially for its potential use within modern design tools. A novel technique for providing the wideband generalised impedance matrix representation of the inductive devices in the form of pole expansions, thus extracting the most expensive computations from the frequency loop is proposed. For such purpose, the whole device is first decomposed into simpler building blocks, i.e. planar junctions and uniform waveguides, which are modelled in terms of…

EngineeringIterative methodNovel techniquesWaveguide filterElectric impedance measurementImpedance parametersMatrix algebralaw.inventionImpedance matricesPlanarlawFull wave analysisIterative algorithmElectronic engineeringPlanar junctionsElectrical and Electronic EngineeringWidebandRepresentation (mathematics)Pole expansionWaveguide filterbusiness.industryBuilding blockesWide-bandDesign toolH-plane waveguidebusinessWaveguideWaveguidesMatrix method
researchProduct

Near-field scanning optical microscopy to study nanometric structural details of LiNbO3 Zn-diffused channel waveguides

2008

A near-field scanning optical microscope (NSOM) is used to perform structural and optical characterization of the surface layer after Zn diffusion in a channel waveguide fabricated on lithium niobate. A theoretical approach has been developed in order to extract refractive index contrast from NSOM optical transmission measurements (illumination configuration). As a result, different solid phases present on the sample surface can be identified, such as ZnO and ZnNb2O6. They appear like submicrometric crystallites aligned along the domain wall direction, whose origin can be ascribed to some strain relaxation mechanism during the annealing process after Zn diffusion. Jose.Canet-Ferrer@uv.es

Materials scienceLithium niobateRefractive indexGeneral Physics and AstronomyWaveguide (optics)law.inventionAnnealingchemistry.chemical_compoundAnnealing ; Crystallites ; Lithium compounds ; Nanostructured materials ; Near-field scanning optical microscopy ; Optical waveguides ; Refractive index ; StoichiometryOpticsOptical microscopelaw:FÍSICA [UNESCO]Refractive index contrastSurface layerNear-field scanning optical microscopyÓpticabusiness.industryUNESCO::FÍSICACrystallitesFísicaLithium compoundsNanostructured materialsStoichiometryOptical waveguideschemistryNear-field scanning optical microscopeCrystallitebusinessRefractive index
researchProduct

Photo-thermal control of surface plasmon mode propagation at telecom wavelengths

2016

Surface plasmon polaritons (SPPs) is the promising versatile platform proposed for guiding electromagnetic waves at nanoscale dimensions. In this context dynamic control of SPPs prop- agation is of paramount importance. Thermo-optical (TO) effect is considered as an efficient technique for performing active control of plasmonic devices. Among the thermo-optical based plasmonic devices demonstrated so far TO coefficient is dominantly provided by a dielectric material on top of the metal sustaining the SPP mode, however, the role of TO properties of the metal has been rarely investigated for plasmonic applications especially at the telecom frequency ranges. Therefore, the aim of this thesis i…

Effets photo-thermique[PHYS.PHYS]Physics [physics]/Physics [physics]Plasmon-polaritons de surface (SPPs)Guides d’ondes en polymèresPhoto-thermal effectsSurface plasmon polaritons (SPPs)Metal opticsMatériaux thermo-optiquesPolymer waveguides[ PHYS.PHYS ] Physics [physics]/Physics [physics]Optical switching devicesThermo-optical ma- terialsPlasmonic waveguidesGuides d’onde plasmoniquesDispositifs de commutation optique[PHYS.PHYS] Physics [physics]/Physics [physics]Optique de métal
researchProduct

A RADIATION CONDITION FOR UNIQUENESS IN A WAVE PROPAGATION PROBLEM FOR 2-D OPEN WAVEGUIDES

2009

We study the uniqueness of solutions of Helmholtz equation for a problem that concerns wave propagation in waveguides. The classical radiation condition does not apply to our problem because the inhomogeneity of the index of refraction extends to infinity in one direction. Also, because of the presence of a waveguide, some waves propagate in one direction with different propagation constants and without decaying in amplitude. Our main result provides an explicit condition for uniqueness which takes into account the physically significant components, corresponding to guided and non-guided waves; this condition reduces to the classical Sommerfeld-Rellich condition in the relevant cases. Final…

Electromagnetic fieldAsymptotic analysisHelmholtz equationWave propagationGeneral Mathematicsmedia_common.quotation_subject78A40 35J05 78A50 35A05Mathematical analysisGeneral Engineeringelectromagnetic fields • wave propagation • Helmholtz equation • optical waveguides • uniqueness of solutions • radiation conditionInfinitylaw.inventionAmplitudeMathematics - Analysis of PDEslawFOS: Mathematicswave propagation; Helmholtz equation; optical waveguides; radiation condition; uniqueness theoremsUniquenessWaveguidemedia_commonMathematicsAnalysis of PDEs (math.AP)
researchProduct

Color Tuning and White Light by Dispersing CdSe, CdTe, and CdS in PMMA Nanocomposite Waveguides

2013

In this paper, active nanocomposite waveguides based on the dispersion of CdS, CdTe, and CdSe colloidal quantum dots (QDs) in PMMA are proposed. Their propagation properties are studied as a function of the concentration of nanoparticles in the polymer using the variable length stripe method. When the three nanostructures are dispersed in the same film, the structure is able to waveguide the three basic colors: red (CdSe), green (CdTe), and blue (CdS), it being possible to engineer any waveguided color by an appropriate choice of the filling factor of each QD in the PMMA matrix. For this purpose, it is important to take into account reabsorption effects and the Förster energy transfe…

Photonic materialslcsh:Applied optics. PhotonicsNanostructureNanocompositeMaterials sciencebusiness.industryNanoparticledisplay materialslcsh:TA1501-1820Nanotechnologyoptical waveguidesWaveguide (optics)Atomic and Molecular Physics and OpticsCadmium telluride photovoltaicsQuantum dotDispersion (optics)Optoelectronicscolloidal quantum dots (QDs)lcsh:QC350-467Electrical and Electronic EngineeringbusinessAbsorption (electromagnetic radiation)lcsh:Optics. LightIEEE Photonics Journal
researchProduct