Search results for "ε-caprolactone"

showing 5 items of 5 documents

GALACTOSE-DECORATED POLYMERIC CARRIERS FOR HEPATOCYTE-SELECTIVE DRUG TARGETING

2015

In this paper, the current available strategies to realize galactose-decorated nanostructured polymeric systems are summarized. These carriers are designed in order to obtain targeted drug delivery to hepatocytes via galactose (GAL) moieties, i.e., for the treatment of viral hepatitis or liver cancer that are the greater causes of global disability and mortality. Usually, the main followed strategy to obtain galactosylated polymeric carriers is to use galactosylated copolymers. The chemical modifications of preformed polymers with sugar-containing reagents is followed for obtaining lactosaminated human albumin, galactosylated phospholipid-polyaminoacid and polylactide (PLA)- polyaminoacid c…

Settore CHIM/09 - Farmaceutico Tecnologico ApplicativoAsialoglycoprotein receptor (ASGP-R) carboxymethyl chitosan (CMC) galactose (GAL) hepatocytes lactosaminated albumin liver targeting poly(ε-caprolactone) (PCL) polyamidoamine (PAMAM) dendrimers polycarbonates polylactide (PLA) xyloglucan αβ-poly(N-2-hydroxyethyl)-DLaspartamide (PHEA).
researchProduct

Production of polymeric micro- and nanostructures with tunable properties as pharmaceutical delivery systems

2020

Abstract The production of novel graft copolymers based on poly-e-caprolactone (PCL) and polyaspartamide are useful to realize structures for potential biomedical applications. Here, the synthesis of pegylated PCL/polyhydroxyethyl aspartamide (PHEA) graft copolymers (PHEA-g-SUCC-PCL-g-PEG) with tunable composition, was achieved by followpling a synthetic strategy that involved first the grafting of preformed PCL on PHEA backbone, then polyethylen glycol (PEG), by using 1,1′-carbonyldiimidazole (CDI) to speed up the condensation reaction. Graft copolymers with a Derivatization Degree (DD) in PCL ranging between 1.1 and 4.4 mol% were obtained, and processable with different technologies for t…

NanostructureMaterials sciencePolymers and PlasticsMicrofluidicsNanoparticlemacromolecular substances02 engineering and technology010402 general chemistry01 natural sciencesPEG ratioMaterials ChemistryCopolymerOrganic Chemistrytechnology industry and agricultureαβ-poly(N-2-hydroxyethyl)-DL-aspartamide (PHEA)equipment and suppliesmusculoskeletal system021001 nanoscience & nanotechnologyCondensation reactionGrafting0104 chemical sciencesGraft copolymerChemical engineeringMicrofluidicMicroparticlePoly-ε-caprolactone (PCL)Settore CHIM/09 - Farmaceutico Tecnologico ApplicativoNanoparticles0210 nano-technologyNanoprecipitation
researchProduct

MRI-Visible Poly(ε-caprolactone) with Controlled Contrast Agent Ratios for Enhanced Visualization in Temporary Imaging Applications

2013

International audience; Hydrophobic macromolecular contrast agents (MMCAs) are highly desirable to provide safe and efficient magnetic resonance (MR) visibility to implantable medical devices. In this study, we report on the synthesis and evaluation of novel biodegradable poly(ε-caprolactone)-based MMCAs. Poly(α-propargyl-ε-caprolactone-co-ε-caprolactone)s containing 2, 5, and 10 mol % of propargyl groups have been prepared by ring-opening copolymerization of ε-caprolactone and the corresponding propargylated lactone. In parallel, a diazido derivative of the clinically used diethylenetriaminepentaacetic acid (DTPA)/Gd3+ complex has been synthesized. Finally, MRI-visible poly(ε-caprolactone)…

Gadolinium DTPAPolymers and PlasticsMacromolecular SubstancesPolyestersContrast MediaBiocompatible MaterialsBioengineering02 engineering and technology010402 general chemistrybiomedical01 natural sciencesImagingBiomaterialsMicechemistry.chemical_compoundPoly(ε-caprolactone)Polymer chemistryMaterials ChemistryCopolymerAnimalsmacromolecularCell Proliferationchemistry.chemical_classificationMolecular Structure[CHIM.ORGA]Chemical Sciences/Organic chemistryMRI; Poly(ε-caprolactone); ImagingSpin–lattice relaxationFibroblastsHydrophobic[CHIM.ORGA] Chemical Sciences/Organic chemistry021001 nanoscience & nanotechnologyGraftingMagnetic Resonance ImagingvisibleCycloaddition0104 chemical sciencescopolymerizationchemistryPropargylDTPA0210 nano-technologyCaprolactoneLactoneMacromoleculeMRI
researchProduct

Structural, mechanical and thermal behavior assessments of PCL/PHB blends reactively compatibilized with organic peroxides

2018

Abstract The efficiency of two commercially available organic peroxides, dicumyl peroxide (DCP) and di-(2-tert-butyl-peroxyisopropyl)-benzene (BIB), during reactive processing of poly(e-caprolactone)/poly(3-hydroxybutyrate) (PCL/PHB) blends was investigated. The changes in chemical structure of PCL/PHB blends, as a function of organic peroxide type (DCP/BIB) and content (in range: 0–1.0 parts by weight - pbw), were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis combined with infrared spectroscopy, and headspace analysis combined with gas chromatography with flame ionization detector. Performance properties of PCL/PHB blends were evaluated based on diffe…

Thermogravimetric analysisOrganic peroxideMaterials sciencePolymers and PlasticsInfrared spectroscopypoly(3-hydroxybutyrate)02 engineering and technology010402 general chemistry01 natural scienceschemistry.chemical_compoundDifferential scanning calorimetrystructure-property relationshipsFourier transform infrared spectroscopychemistry.chemical_classificationcompatibilizationTVOCOrganic ChemistryDynamic mechanical analysisPolymer021001 nanoscience & nanotechnologyreactive blending0104 chemical sciencesPolyesterchemistryChemical engineering0210 nano-technologypoly(ε-caprolactone)Polymer Testing
researchProduct

Ring opening polymerization of ε-caprolactone initiated by titanium and vanadium complexes of ONO-type schiff base ligand

2021

AbstractA phenoxy-imine proligand with the additional OH donor group, 4,6-tBu2-2-(2-CH2(OH)-C6H4N = CH)C6H3OH (LH2), was synthesized and used to prepare group 4 and 5 complexes by reacting with Ti(OiPr)4 (LTi) and VO(OiPr)3 (LV). All new compounds were characterized by the FTIR, 1H and 13C NMR spectroscopy and LTi by the single-crystal X-ray diffraction analysis. The complexes were used as catalysts in the ring opening polymerization of ε-caprolactone. The influence of monomer/transition metal molar ratio, reaction time, polymerization temperature as well as complex type was investigated in detail. The complexes showed high (LTi) and moderate (LV) activity in ε-caprolactone polymerization a…

Schiff baseMaterials sciencePolymers and PlasticsRing-opening polymerizationOrganic ChemistryTridentate phenoxy-imine ligandVanadiumchemistry.chemical_elementVanadium complexRing-opening polymerizationCatalysischemistry.chemical_compoundMonomerchemistryTransition metalPolymerizationPolymer chemistryTitanium complexMaterials Chemistryε-caprolactoneCaprolactoneJournal of Polymer Research
researchProduct