0000000000000020

AUTHOR

Ana Perea-garcía

0000-0001-7032-9117

showing 16 related works from this author

Deregulated High Affinity Copper Transport Alters Iron Homeostasis inArabidopsis

2020

The present work describes the effects on iron homeostasis when copper transport was deregulated in Arabidopsis thaliana by overexpressing high affinity copper transporters COPT1 and COPT3 (COPTOE). A genome-wide analysis conducted on COPT1OE plants, highlighted that iron homeostasis gene expression was affected under both copper deficiency and excess. Among the altered genes were those encoding the iron uptake machinery and their transcriptional regulators. Subsequently, COPTOE seedlings contained less iron and were more sensitive than controls to iron deficiency. The deregulation of copper (I) uptake hindered the transcriptional activation of the subgroup Ib of basic helix-loop-helix (bHL…

0106 biological sciences0301 basic medicineArabidopsis thalianaPlant Sciencelcsh:Plant culture01 natural sciencesHigh affinity copper importer 103 medical and health sciencesIron homeostasisCopper uptakeArabidopsisIron homeostasisBIOQUIMICA Y BIOLOGIA MOLECULARmedia_common.cataloged_instanceArabidopsis thalianalcsh:SB1-1110European unionmedia_commonbiologyChemistryHigh affinity copper transportbiology.organism_classificationCell biologyMetal mobilization030104 developmental biologyChristian ministryMetal mobilizationMetal interactions010606 plant biology & botany
researchProduct

The role of post-transcriptional modulators of metalloproteins in response to metal deficiencies

2021

Copper and iron proteins play a wide range of functions in living organisms. Metal assembly into metalloproteins is a complex process, where mismetalation is detrimental and energy-consuming to cells. Under metal deficiency, metal distribution is expected to reach a metalation ranking, prioritizing essential versus dispensable metalloproteins, while avoiding interferences with other metals and protecting metal-sensitive processes. In this review, we propose that posttranscriptional Modulators of Metalloprotein messenger RNA (ModMeR) are good candidates in metal prioritization under metal-limited conditions. ModMeR target high quota or redundant metalloproteins and, by adjusting their synthe…

Arabidopsis thalianaPhysiologyMetalationIronArabidopsischemistry.chemical_elementSaccharomyces cerevisiaePlant ScienceMetalMetalloproteinCth2MetalloproteinsMetalloproteinMetalationAnimalsArabidopsis thalianaIron deficiency (plant disorder)Mammalschemistry.chemical_classificationbiologyIron deficiencyIron DeficienciesCopper deficiencybiology.organism_classificationCopperCell biologyCu-miRNAsMetal flowchemistryMetalsvisual_artvisual_art.visual_art_mediumIRPPosttranscriptional regulationCopperFunction (biology)Journal of Experimental Botany
researchProduct

Deregulated Copper Transport Affects Arabidopsis Development Especially in the Absence of Environmental Cycles    

2010

Abstract Copper is an essential cofactor for key processes in plants, but it exerts harmful effects when in excess. Previous work has shown that the Arabidopsis (Arabidopsis thaliana) COPT1 high-affinity copper transport protein participates in copper uptake through plant root tips. Here, we show that COPT1 protein localizes to the plasma membrane of Arabidopsis cells and the phenotypic effects of transgenic plants overexpressing either COPT1 or COPT3, the latter being another high-affinity copper transport protein family member. Both transgenic lines exhibit increased endogenous copper levels and are sensitive to the copper in the growth medium. Additional phenotypes include decreased hypo…

photoperiodismbiologyPhysiologyMembrane transport proteinPeriod (gene)Circadian clockfood and beveragesPlant Sciencebiology.organism_classificationTransport proteinCell biologyArabidopsisBotanyGeneticsbiology.proteinArabidopsis thalianaCircadian rhythmPlant Physiology
researchProduct

Modulation of copper deficiency responses by diurnal and circadian rhythms in Arabidopsis thaliana

2015

Highlight Cyclic expression of copper transport and the responses to copper deficiency are integrated into the light and circadian–oscillator signalling in plants.

0106 biological sciencescopper deficiencyArabidopsis thalianaPhysiologyPeriod (gene)Circadian clockArabidopsischemistry.chemical_elementPlant Science01 natural sciencesdiurnal rhythm03 medical and health sciencesGene Expression Regulation Plantcircadian clockmedicineArabidopsis thalianaHomeostasisCircadian rhythmSLC31 Proteinsheavy metalsTranscription factorCation Transport Proteins030304 developmental biologyGeneticsheavy metals.0303 health sciencesbiologyArabidopsis ProteinsSuperoxide DismutaseGiganteafood and beveragesbiology.organism_classificationmedicine.diseasePlants Genetically ModifiedCopperCell biologyCircadian RhythmDNA-Binding Proteinschemistrycopper transportCopper deficiencyCopper010606 plant biology & botanyResearch PaperTranscription Factors
researchProduct

The intracellular Arabidopsis COPT5 transport protein is required for photosynthetic electron transport under severe copper deficiency

2011

Copper is an essential micronutrient that functions as a redox cofactor in multiple plant processes, including photosynthesis. Arabidopsis thaliana possesses a conserved family of CTR-like high-affinity copper transport proteins denoted as COPT1-5. COPT1, the only family member that is functionally characterized, participates in plant copper acquisition. However, little is known about the function of the other Arabidopsis COPT proteins in the transport and distribution of copper. Here, we show that a functional fusion of COPT5 to the green fluorescent protein localizes in Arabidopsis cells to the prevacuolar compartment. Plants defective in COPT5 do not exhibit any significant phenotype und…

biologyMutantchemistry.chemical_elementCell BiologyPlant Sciencebiology.organism_classificationmedicine.diseasePhotosynthesisCopperTransport proteinCell biologyGreen fluorescent proteinBiochemistrychemistryArabidopsisGeneticsmedicineArabidopsis thalianaCopper deficiencyThe Plant Journal
researchProduct

Yeast Cth2 protein represses the translation of ARE-containing mRNAs in response to iron deficiency

2018

In response to iron deficiency, the budding yeast Saccharomyces cerevisiae undergoes a metabolic remodeling in order to optimize iron utilization. The tandem zinc finger (TZF)-containing protein Cth2 plays a critical role in this adaptation by binding and promoting the degradation of multiple mRNAs that contain AU-rich elements (AREs). Here, we demonstrate that Cth2 also functions as a translational repressor of its target mRNAs. By complementary approaches, we demonstrate that Cth2 protein inhibits the translation of SDH4, which encodes a subunit of succinate dehydrogenase, and CTH2 mRNAs in response to iron depletion. Both the AREs within SDH4 and CTH2 transcripts, and the Cth2 TZF are es…

0301 basic medicineCancer ResearchRNA StabilityAdaptation BiologicalGene ExpressionBiochemistryGene Expression Regulation FungalGene expressionMedicine and Health SciencesExpressió genèticaGenetics (clinical)Regulation of gene expressionZinc fingerbiologyMessenger RNANutritional DeficienciesEukaryotaTranslation (biology)Iron DeficienciesCell biologyNucleic acidsDNA-Binding ProteinsCellular Structures and OrganellesResearch ArticleSaccharomyces cerevisiae Proteinslcsh:QH426-470IronProtein subunitSaccharomyces cerevisiaeSaccharomyces cerevisiaeDNA constructionRegulatory Sequences Ribonucleic Acid03 medical and health sciencesExtraction techniquesTristetraprolinPolysomeGeneticsRNA MessengerMolecular BiologyEcology Evolution Behavior and SystematicsNutritionAU Rich ElementsAU-rich elementBiology and life sciencesOrganismsFungiCell Biologybiology.organism_classificationYeastRNA extractionResearch and analysis methodslcsh:GeneticsMolecular biology techniques030104 developmental biologyPolyribosomesPlasmid ConstructionIron DeficiencyRNAProtein TranslationRibosomesTranscription Factors
researchProduct

Daily rhythmicity of high affinity copper transport

2016

A differential demand for copper (Cu) of essential cupro-proteins that act within the mitochondrial and chloroplastal electronic transport chains occurs along the daily light/dark cycles. This requires a fine-tuned spatiotemporal regulation of Cu delivery, becoming especially relevant under non-optimal growth conditions. When scarce, Cu is imported through plasma membrane-bound high affinity Cu transporters (COPTs) whose coding genes are transcriptionally induced by the SPL7 transcription factor. Temporal homeostatic mechanisms are evidenced by the presence of multiple light- and clock-responsive regulatory cis elements in the promoters of both SPL7 and its COPT targets. A model is presente…

0106 biological sciences0301 basic medicineCircadian clockArabidopsisComputingMilieux_LEGALASPECTSOFCOMPUTINGPlant Science01 natural sciencesElectron Transport03 medical and health sciencesGene Expression Regulation PlantArabidopsisBotanyRNA MessengerSLC31 ProteinsPromoter Regions GeneticCation Transport ProteinsTranscription factorbiologyArabidopsis ProteinsGiganteaTransporterPromoterbiology.organism_classificationElectron transport chainArticle AddendumCircadian RhythmTransport proteinDNA-Binding Proteins030104 developmental biologyBiophysicsCopperMetabolic Networks and PathwaysTranscription Factors010606 plant biology & botanyPlant Signaling & Behavior
researchProduct

Arabidopsis copper transport protein COPT2 participates in the crosstalk between iron deficiency responses and low phosphate signaling

2013

[EN] Copper and iron are essential micronutrients for most living organisms because they participate as cofactors in biological processes, including respiration, photosynthesis, and oxidative stress protection. In many eukaryotic organisms, including yeast (Saccharomyces cerevisiae) and mammals, copper and iron homeostases are highly interconnected; yet, such interdependence is not well established in higher plants. Here, we propose that COPT2, a high-affinity copper transport protein, functions under copper and iron deficiencies in Arabidopsis (Arabidopsis thaliana). COPT2 is a plasma membrane protein that functions in copper acquisition and distribution. Characterization of the COPT2 expr…

PhysiologyArabidopsisPlant SciencePlant RootsMembranes Transport and BioenergeticsGene Expression Regulation PlantArabidopsisThalianaHomeostasisArabidopsis thalianaSLC31 ProteinsGene-expressionCation Transport ProteinsChlorosisbiologyRevealsIron DeficienciesMetal homeostasisPlantsPlants Genetically ModifiedUp-RegulationTransport proteinPhenotypeBiochemistrySignal TransductionIronRecombinant Fusion ProteinsSaccharomyces cerevisiaechemistry.chemical_elementSaccharomyces cerevisiaeModels BiologicalPhosphatesEthyleneGeneticsmedicineBIOQUIMICA Y BIOLOGIA MOLECULARFamilyIron deficiency (plant disorder)Arabidopsis ProteinsBiological TransportRoot elongationSequence Analysis DNAbiology.organism_classificationmedicine.diseaseCopperPlant LeavesAcquisitionchemistrySeedlingsStarvationMutationCopper deficiencyCopper
researchProduct

Sequential recruitment of the mRNA decay machinery to the iron-regulated protein Cth2 in Saccharomyces cerevisiae

2020

Post-transcriptional factors importantly contribute to the rapid and coordinated expression of the multiple genes required for the adaptation of living organisms to environmental stresses. In the model eukaryote Saccharomyces cerevisiae, a conserved mRNA-binding protein, known as Cth2, modulates the metabolic response to iron deficiency. Cth2 is a tandem zinc-finger (TZF)-containing protein that co-transcriptionally binds to adenine/uracil-rich elements (ARE) present in the 3′-untranslated region of iron-related mRNAs to promote their turnover. The nuclear binding of Cth2 to mRNAs via its TZFs is indispensable for its export to the cytoplasm. Although Cth2 nucleocytoplasmic transport is ess…

Exonuclease:YeastSaccharomyces cerevisiae ProteinsIronRNA StabilitySaccharomyces cerevisiaeAdaptation BiologicalBiophysicsSaccharomyces cerevisiaeBiochemistryDEAD-box RNA Helicases03 medical and health sciencesTristetraprolinStructural BiologyGene Expression Regulation FungalGene expressionGenetics[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyRNA MessengerMolecular BiologyPost-transcriptional regulationGene030304 developmental biology0303 health sciencesbiologyChemistryPost-transcriptional regulationIron deficiency030302 biochemistry & molecular biologyIron-Regulatory ProteinsIron Deficienciesbiology.organism_classificationRNA Helicase AYeast3. Good healthCell biology[SDV.BBM.BP]Life Sciences [q-bio]/Biochemistry Molecular Biology/BiophysicsCytoplasmbiology.proteinGene expressionFunction (biology)
researchProduct

Comparison of global responses to mild deficiency and excess copper levels in Arabidopsis seedlings

2013

[EN] Copper is an essential micronutrient in higher plants, but it is toxic in excess. The fine adjustments required to fit copper nutritional demands for optimal growth are illustrated by the diverse, severe symptoms resulting from copper deficiency and excess. Here, a differential transcriptomic analysis was done between Arabidopsis thaliana plants suffering from mild copper deficiency and those with a slight copper excess. The effects on the genes encoding cuproproteins or copper homeostasis factors were included in a CuAt database, which was organised to collect additional information and connections to other databases. The categories overrepresented under copper deficiency and copper e…

ArabidopsisBiophysicsFunctional homologchemistry.chemical_elementCircadian clockTransporterBiochemistryBiomaterialsTranscriptomeSuperoxide dismutaseStomatal closureGene Expression Regulation PlantIron homeostasisArabidopsisThalianamedicineHomeostasisArabidopsis thalianaGeneOligonucleotide Array Sequence AnalysisGeneticsDose-Response Relationship DrugbiologyArabidopsis ProteinsReverse Transcriptase Polymerase Chain ReactionSuperoxide DismutaseProteinMetals and AlloysBindingMicronutrientbiology.organism_classificationmedicine.diseaseCopperDNA-Binding ProteinschemistryBiochemistrySeedlingsChemistry (miscellaneous)biology.proteinFeedback loopTranscription factorTranscriptomeCopper deficiencyCopperTranscription FactorsMetallomics
researchProduct

The Copper-microRNA Pathway Is Integrated with Developmental and Environmental Stress Responses in Arabidopsis thaliana

2021

As an essential nutrient, copper (Cu) scarcity causes a decrease in agricultural production. Cu deficiency responses include the induction of several microRNAs, known as Cu-miRNAs, which are responsible for degrading mRNAs from abundant and dispensable cuproproteins to economize copper when scarce. Cu-miRNAs, such as miR398 and miR408 are conserved, as well as the signal transduction pathway to induce them under Cu deficiency. The Arabidopsis thaliana SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) family member SPL7 binds to the cis-regulatory motifs present in the promoter regions of genes expressed under Cu deficiency, including Cu-miRNAs. The expression of several other SPL transcription f…

copper-microRNAsSPLArabidopsis thalianaQH301-705.5Arabidopsischemistry.chemical_elementPlant DevelopmentEnvironmental stressCatalysisArticleInorganic ChemistrystressStress PhysiologicalmicroRNAArabidopsis thalianaPhysical and Theoretical ChemistryBiology (General)Molecular BiologyTranscription factorGeneQD1-999developmentSpectroscopybiologyArabidopsis Proteins<i>Arabidopsis thaliana</i>Organic ChemistryPromotercopper homeostasisGeneral Medicinebiology.organism_classificationCopperComputer Science ApplicationsCell biologyDNA-Binding ProteinsChemistryMicroRNAschemistrySignal transductionCopperTranscription Factors
researchProduct

The Arabidopsis COPT6 Transport Protein Functions in Copper Distribution Under Copper-Deficient Conditions

2013

Copper (Cu), an essential redox active cofactor, participates in fundamental biological processes, but it becomes highly cytotoxic when present in excess. Therefore, living organisms have established suitable mechanisms to balance cellular and systemic Cu levels. An important strategy to maintain Cu homeostasis consists of regulating uptake and mobilization via the conserved family of CTR/COPT Cu transport proteins. In the model plant Arabidopsis thaliana, COPT1 protein mediates root Cu acquisition, whereas COPT5 protein functions in Cu mobilization from intracellular storage organelles. The function of these transporters becomes critical when environmental Cu bioavailability diminishes. Ho…

PhysiologyMolecular Sequence DataSaccharomyces cerevisiaeMutantArabidopsisSaccharomyces cerevisiaePlant SciencePlant RootsCofactorCell membraneGene Expression Regulation PlantArabidopsisOrganellemedicineHomeostasisAmino Acid SequenceSLC31 ProteinsbiologyArabidopsis ProteinsMembrane transport proteinCell MembraneGenetic Complementation TestMembrane Transport ProteinsBiological TransportCell BiologyGeneral MedicinePlants Genetically Modifiedbiology.organism_classificationUp-RegulationTransport proteinCell biologyPlant LeavesMutagenesis Insertionalmedicine.anatomical_structureBiochemistrySeedsbiology.proteinPlant Vascular BundleSequence AlignmentCopperPlant ShootsPlant and Cell Physiology
researchProduct

Identification and molecular characterization of the high-affinity copper transporters family in Solanum lycopersicum

2021

Copper (Cu) plays a key role as cofactor in the plant proteins participating in essential cellular processes, such as electron transport and free radical scavenging. Despite high-affinity Cu transporters (COPTs) being key participants in Cu homeostasis maintenance, very little is known about COPTs in tomato (Solanum lycopersicum) even though it is the most consumed fruit worldwide and this crop is susceptible to suboptimal Cu conditions. In this study, a six-member family of COPT (SlCOPT1-6) was identified and characterized. SlCOPTs have a conserved architecture consisting of three transmembrane domains and β-strains. However, the presence of essential methionine residues, a methionine-enri…

0106 biological sciencesATPaseBiotecnologia agrícolaMolecular ConformationGene ExpressionCOPT01 natural sciencesBiochemistryTomatoStructure-Activity Relationship03 medical and health scienceschemistry.chemical_compoundCopper Transport ProteinsSolanum lycopersicumStructural BiologyGene expressionTomàquetsAmino Acid SequenceHeavy metal stressMolecular BiologyConserved SequencePhylogenyPlant Proteins030304 developmental biology0303 health sciencesMethioninebiologyChemistryfood and beveragesGeneral MedicinePeroxisomeYeastComplementationTransmembrane domainBiochemistryMultigene Familybiology.proteinCopper010606 plant biology & botanyCysteineInternational Journal of Biological Macromolecules
researchProduct

Characterization of the Copper Transporters from Lotus spp. and Their Involvement under Flooding Conditions

2019

Forage legumes are an important livestock nutritional resource, which includes essential metals, such as copper. Particularly, the high prevalence of hypocuprosis causes important economic losses to Argentinian cattle agrosystems. Copper deficiency in cattle is partially due to its low content in forage produced by natural grassland, and is exacerbated by flooding conditions. Previous results indicated that incorporation of Lotus spp. into natural grassland increases forage nutritional quality, including higher copper levels. However, the biological processes and molecular mechanisms involved in copper uptake by Lotus spp. remain poorly understood. Here, we identify four genes that encode p…

0106 biological sciences0301 basic medicineBiologíalegumesLotusCOPPERFLOODING01 natural scienceslcsh:ChemistryCopper transportersProtein-fragment complementation assayCation Transport Proteinslcsh:QH301-705.5SpectroscopyPlant Proteinsbiologyfood and beveragesGeneral MedicinePhenotypeComputer Science ApplicationsLEGUMESSaccharomyces cerevisiaechemistry.chemical_elementCatalysisArticleInorganic Chemistry03 medical and health sciencesfloodingStress PhysiologicalFORAGEBotanymedicineCiencias AgrariasPhysical and Theoretical ChemistryMolecular BiologyGeneOrganic Chemistryfungiforagebiology.organism_classificationmedicine.disease//purl.org/becyt/ford/4.5 [https]CopperTRANSPORTERScopper transportersYeastFloods030104 developmental biologychemistrylcsh:Biology (General)lcsh:QD1-999CIENCIAS AGRÍCOLASLotusOtras Ciencias AgrícolasCopper deficiency//purl.org/becyt/ford/4 [https]Copper010606 plant biology & botanyInternational Journal of Molecular Sciences
researchProduct

Copper homeostasis influences the circadian clock in Arabidopsis.

2010

Almost every aspect of plant physiology is influenced by diurnal and seasonal environmental cycles which suggests that biochemical oscillations must be a pervasive phenomenon in the underlying molecular organization. The circadian clock is entrained by light and temperature cycles, and controls a wide variety of endogenous processes that enable plants to anticipate the daily periodicity of environmental conditions. Several previous reports suggest a connection between copper (Cu) homeostasis and the circadian clock in different organisms other than plants. However, the nature of the Cu homeostasis influence on chronobiology remains elusive. Cytosolic Cu content could oscillate since Cu regu…

GeneticsChronobiologybiologyCircadian clockArabidopsisPlant physiologyEndogenyPlant Sciencebiology.organism_classificationModels BiologicalBacterial circadian rhythmsCell biologyCircadian RhythmArticle AddendumPhenotypeSeedlingsArabidopsisCircadian ClocksHomeostasisMYBCircadian rhythmLuciferasesPromoter Regions GeneticCopperPlant signalingbehavior
researchProduct

The Altered Expression of microRNA408 Influences the Arabidopsis Response to Iron Deficiency

2019

MicroRNAs contribute to the adaptation of plants to varying environmental conditions by affecting systemic mineral nutrient homeostasis. Copper and iron deficiencies antagonistically control the expression of Arabidopsis thaliana microRNA408 (miR408), which post-transcriptionally regulates laccase-like multicopper oxidase family members LAC3, LAC12, and LAC13. In this work, we used miR408 T-DNA insertion mutants (408-KO1 and 408-KO2) and a previously characterized transgenic line overexpressing miR408 (35S:408-14) to explore how miR408 influences copper- and iron-dependent metabolism. We observed that the altered expression of miR408 diminished plant performance and the activation of the ir…

0106 biological sciences0301 basic medicineTransgeneArabidopsisligninhydrogen peroxidePlant Sciencelcsh:Plant cultureMulticopper oxidase01 natural sciencesLignin03 medical and health sciencesiron deficiencyMicroRNA408ArabidopsisArabidopsis thalianalcsh:SB1-1110Iron deficiency (plant disorder)Original ResearchLaccasebiologyChemistryIron deficiencybiology.organism_classificationVascular bundleHydrogen peroxideCell biologymicroRNA408030104 developmental biologybiology.proteinCeruloplasmin010606 plant biology & botany
researchProduct