6533b838fe1ef96bd12a52bf

RESEARCH PRODUCT

Arabidopsis copper transport protein COPT2 participates in the crosstalk between iron deficiency responses and low phosphate signaling

Francisco Vera-sireraSergi PuigNuria Andrés-colásAntoni Garcia-molinaMiguel A. Perez-amadorLola PeñarrubiaAna Perea-garcía

subject

PhysiologyArabidopsisPlant SciencePlant RootsMembranes Transport and BioenergeticsGene Expression Regulation PlantArabidopsisThalianaHomeostasisArabidopsis thalianaSLC31 ProteinsGene-expressionCation Transport ProteinsChlorosisbiologyRevealsIron DeficienciesMetal homeostasisPlantsPlants Genetically ModifiedUp-RegulationTransport proteinPhenotypeBiochemistrySignal TransductionIronRecombinant Fusion ProteinsSaccharomyces cerevisiaechemistry.chemical_elementSaccharomyces cerevisiaeModels BiologicalPhosphatesEthyleneGeneticsmedicineBIOQUIMICA Y BIOLOGIA MOLECULARFamilyIron deficiency (plant disorder)Arabidopsis ProteinsBiological TransportRoot elongationSequence Analysis DNAbiology.organism_classificationmedicine.diseaseCopperPlant LeavesAcquisitionchemistrySeedlingsStarvationMutationCopper deficiencyCopper

description

[EN] Copper and iron are essential micronutrients for most living organisms because they participate as cofactors in biological processes, including respiration, photosynthesis, and oxidative stress protection. In many eukaryotic organisms, including yeast (Saccharomyces cerevisiae) and mammals, copper and iron homeostases are highly interconnected; yet, such interdependence is not well established in higher plants. Here, we propose that COPT2, a high-affinity copper transport protein, functions under copper and iron deficiencies in Arabidopsis (Arabidopsis thaliana). COPT2 is a plasma membrane protein that functions in copper acquisition and distribution. Characterization of the COPT2 expression pattern indicates a synergic response to copper and iron limitation in roots. We characterized a knockout of COPT2, copt2-1, that leads to increased resistance to simultaneous copper and iron deficiencies, measured as reduced leaf chlorosis and improved maintenance of the photosynthetic apparatus. We propose that COPT2 could play a dual role under iron deficiency. First, COPT2 participates in the attenuation of copper deficiency responses driven by iron limitation, possibly to minimize further iron consumption. Second, global expression analyses of copt2-1 versus wild-type Arabidopsis plants indicate that low-phosphate responses increase in the mutant. These results open up new biotechnological approaches to fight iron deficiency in crops.

10.1104/pp.112.212407https://hdl.handle.net/10251/81260