Electrochemical deposition of aniline derivatives for conductometric gas sensors
International audience; Polymer film of poly(2,3,5,6-tetrafluoroaniline) (PTFA) were electroplated on ITO substrate from acidic medium by chronoamperometry. Electrochemical and morphological characterizations were performed and compared to polyaniline properties similarly coated. It seemed that PTFA film had an irreversible redox response with poor conductivity due to the absence of acid-base doping. This film were then incorporated in a patented device called MSDI heterojunction to perform ammonia sensing in humid atmosphere.
Modulation of the organic heterojunction behavior, from electrografting to enhanced sensing properties
International audience; The energy barrier of an organic heterojunction built on ITO electrodes and made from a low conductive sublayer (Cu(F16Pc)) covered by a highly conductive semiconductor (LuPc2) is modulated by electrografting of organic layers before depositing the sublayer. Impedance spectroscopy clearly demonstrates the increase of the energy barrier at the ITO – sublayer interface. Additionally, the electrografting is a versatile and promising method for the tuning of heterojunctions. The I(V) characteristics of the heterojunctions are highly modified by the electrografting. The same electromodifications of electrodes carried out on LuPc2 resistors lead to a modification of their …
Photon assisted-inversion of majority charge carriers in molecular semiconductor-based organic heterojunctions
International audience; Ambipolar molecular materials hold great promises as a building block of next generation highly efficient, less complex and low cost electronics devices. In this endeavor, the present work reports the fabrication of organic heterojunction devices based on halogenated copper Phthalocyanines (CuPc) and lutetium bisphthalocyanine (LuPc2) bilayer, investigates their structural and electrical properties and probes the ambipolar behavior by ammonia sensing. Microstructural analysis of the heterostructure thin films revealed compact and semicrystalline organization, depending on the number of halogen substituents in CuPc. The heterojunction devices reveal a non-linear I(V) …
Conducting Polymers for Ammonia Sensing: Electrodeposition, Hybrid Materials and Heterojunctions
International audience; Polyaniline (PANI) with electrodonating and electrowithdrawing substituents were electrodeposited and studied as sensing materials in resistors and heterojunctions. Whereas the dimethoxyaniline leads to a highly conductive material, the tetrafluoroaniline leads to a poor conducting polymer. However, this latter was used in heterojunctions, associated with a highly conductive material, the lutetium bisphthalocyanine LuPc2. Elsewhere, hybrid materials combining polypyrrole (PPy) with ionic macrocycles as counterions were also electrosynthesized and used as sensing material in resistors, for the detection of ammonia. They exhibit a higher sensitivity compared to PPy pre…
A tungsten oxide–lutetium bisphthalocyanine n–p–n heterojunction: from nanomaterials to a new transducer for chemo-sensing
We report on a new hybrid heterojunction gas-sensitive device by combining a molecular material with a metal oxide. WO3 was synthesised via an aerosol-assisted chemical vapour deposition technique from a tungsten hexacarbonyl precursor. Onto an inorganic film, LuPc2 was vacuum evaporated. The morphology of the WO3–LuPc2 hybrid films is dominated by the morphological features of the tungsten oxide film, as shown by scanning electron microscopy and atomic force microscopy. Raman spectroscopy of the device confirms the presence of both materials. The non-linear I–V characteristics demonstrate the existence of an energy barrier at the interface between the inorganic and molecular materials. The…
Modifications électrochimiques de surfaces et dispositifs électroniques organiques
Organic electronics remains a fruitful research field thanks to the diversity of molecular structures reachable by organic synthesis. Molecular materials offer convenient shaping processes, such as solution processing techniques, which can be used for the fabrication of organic devices on plastic substrates.Our works can be summarized as the elaboration of conductometric devices thanks to electrochemistry and the study of their electrical and sensing properties. They deal with two topics: the development of new transducers based on substituted polyanilines and phthalocyanines and the study of the influence of electrochemical modifications on the behavior of known devices.We first developped…
Low Conductive Electrodeposited Poly(2,5-dimethoxyaniline) as a Key Material in a Double Lateral Heterojunction, for Sub-ppm Ammonia Sensing in Humid Atmosphere
We present a new device called a double lateral heterojunction (DLH) as an ammonia sensor in humid atmosphere. It combines polyaniline derivatives in their poor conducting state with a highly conductive molecular material, lutetium bisphthalocyanine, LuPc2. Polyaniline and poly(2,5-dimethoxyaniline) are electrodeposited on ITO interdigitated electrodes, leading to an original device that can be obtained only by electrochemistry and not by other solution processing techniques. Both polymers lead to highly conducting materials that require a neutralization step before their coverage by LuPc2. While the device based on polyaniline shows ohmic behavior, the nonlinear I- V characteristics of the…
New n-type molecular semiconductor–doped insulator (MSDI) heterojunctions combining a triphenodioxazine (TPDO) and the lutetium bisphthalocyanine (LuPc2) for ammonia sensing
International audience; Molecular semiconductor–doped insulator (MSDI) heterojunctions were designed using a new family of sublayers, namely triphenodioxazines (TPDO). The device obtained by combining the tetracyano triphenodioxazine bearing two triisopropylsilylethynyl moieties as a sublayer with the lutetium bisphthalocyanine (LuPc2) as a top layer showed a nonlinear current–voltage characteristic independent of the sign of the polarization, which is the signature of MSDI heterojunctions. Thus, a TPDO was used in a chemical sensor for the first time. Despite LuPc2 being the only material exposed to the atmosphere, the positive response of the device under ammonia revealed the key role pla…
Comprehensive Study of Poly(2,3,5,6-tetrafluoroaniline): From Electrosynthesis to Heterojunctions and Ammonia Sensing.
In this work, we report for the first time on a comprehensive study of poly(2,3,5,6-tetrafluoroaniline) (PTFANI). Contrary to the nonfluorinated polyaniline (PANI) or its analogues bearing one fluorine atom, PTFANI is a poorly conductive material. We present a comprehensive study of the electrosynthesized PTFANI from its monomer in an acidic aqueous medium. PTFANI was fully characterized by a potential-pH diagram, spectroelectrochemistry, and electrochemical quartz crystal microbalance (EQCM) measurements, as well as by a morphological study. Combined with the X-ray photoelectron spectroscopy (XPS) analysis, it allowed us to understand the redox properties of this polymer compared to those …