6533b834fe1ef96bd129e005
RESEARCH PRODUCT
New n-type molecular semiconductor–doped insulator (MSDI) heterojunctions combining a triphenodioxazine (TPDO) and the lutetium bisphthalocyanine (LuPc2) for ammonia sensing
Yohann NicolasGuillaume GruntzRita Meunier-prestAmélie WannebroucqJean-moïse SuisseMickaël MateosThierry ToupanceMarcel Bouvetsubject
Analytical chemistrychemistry.chemical_element02 engineering and technology010402 general chemistryConductometric transducer01 natural sciencesAmmoniachemistry.chemical_compoundMolecular semiconductorAmmonia[CHIM.ANAL]Chemical Sciences/Analytical chemistryMaterials ChemistryTriphenodioxazineElectrical and Electronic EngineeringMolecular materialsInstrumentationChemistrybusiness.industryDopingMetals and AlloysHeterojunction021001 nanoscience & nanotechnologyCondensed Matter PhysicsLutetiumChemical sensor0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materials[SPI.TRON]Engineering Sciences [physics]/ElectronicsMolecular materialsPositive responseHeterojunctionsOptoelectronics0210 nano-technologybusinessdescription
International audience; Molecular semiconductor–doped insulator (MSDI) heterojunctions were designed using a new family of sublayers, namely triphenodioxazines (TPDO). The device obtained by combining the tetracyano triphenodioxazine bearing two triisopropylsilylethynyl moieties as a sublayer with the lutetium bisphthalocyanine (LuPc2) as a top layer showed a nonlinear current–voltage characteristic independent of the sign of the polarization, which is the signature of MSDI heterojunctions. Thus, a TPDO was used in a chemical sensor for the first time. Despite LuPc2 being the only material exposed to the atmosphere, the positive response of the device under ammonia revealed the key role played by the n-type TPDO sublayer. The device exhibits a response stable over time and can operate in a broad range of relative humidity.
year | journal | country | edition | language |
---|---|---|---|---|
2018-02-01 |