Electrochemical and Spectroelectrochemical Behavior of a Tetracyanotriphenodioxazine in Solution and Thin-Films
International audience; We report the electrochemical behavior of a tetracyano triphenodioxazine bearing two triisopropylsilylethynyl moieties (TiPS‐TPDO‐tetraCN) during its reduction studied either in solution or after vacuum evaporation deposition on indium tin oxide (ITO) support. While in dichloromethane, it typically proceeds in two successive monoelectronic reactions, in acetonitrile, the mechanism appears more complex. Fine analysis of the spectroelectrochemical results combined with simulation of the voltammograms with various amount of water suggest the involvement of water and of a restructured dianion in the electrochemical process. In the solid‐state, the formation of the diprot…
New n-type molecular semiconductor–doped insulator (MSDI) heterojunctions combining a triphenodioxazine (TPDO) and the lutetium bisphthalocyanine (LuPc2) for ammonia sensing
International audience; Molecular semiconductor–doped insulator (MSDI) heterojunctions were designed using a new family of sublayers, namely triphenodioxazines (TPDO). The device obtained by combining the tetracyano triphenodioxazine bearing two triisopropylsilylethynyl moieties as a sublayer with the lutetium bisphthalocyanine (LuPc2) as a top layer showed a nonlinear current–voltage characteristic independent of the sign of the polarization, which is the signature of MSDI heterojunctions. Thus, a TPDO was used in a chemical sensor for the first time. Despite LuPc2 being the only material exposed to the atmosphere, the positive response of the device under ammonia revealed the key role pla…