0000000000000835
AUTHOR
James O. Berger
Rejection odds and rejection ratios: A proposal for statistical practice in testing hypotheses
Much of science is (rightly or wrongly) driven by hypothesis testing. Even in situations where the hypothesis testing paradigm is correct, the common practice of basing inferences solely on p-values has been under intense criticism for over 50 years. We propose, as an alternative, the use of the odds of a correct rejection of the null hypothesis to incorrect rejection. Both pre-experimental versions (involving the power and Type I error) and post-experimental versions (depending on the actual data) are considered. Implementations are provided that range from depending only on the p-value to consideration of full Bayesian analysis. A surprise is that all implementations -- even the full Baye…
Statistical inference and Monte Carlo algorithms
This review article looks at a small part of the picture of the interrelationship between statistical theory and computational algorithms, especially the Gibbs sampler and the Accept-Reject algorithm. We pay particular attention to how the methodologies affect and complement each other.
The Effective Sample Size
Model selection procedures often depend explicitly on the sample size n of the experiment. One example is the Bayesian information criterion (BIC) criterion and another is the use of Zellner–Siow priors in Bayesian model selection. Sample size is well-defined if one has i.i.d real observations, but is not well-defined for vector observations or in non-i.i.d. settings; extensions of critera such as BIC to such settings thus requires a definition of effective sample size that applies also in such cases. A definition of effective sample size that applies to fairly general linear models is proposed and illustrated in a variety of situations. The definition is also used to propose a suitable ‘sc…
Prior-based Bayesian information criterion
We present a new approach to model selection and Bayes factor determination, based on Laplace expansions (as in BIC), which we call Prior-based Bayes Information Criterion (PBIC). In this approach, the Laplace expansion is only done with the likelihood function, and then a suitable prior distribution is chosen to allow exact computation of the (approximate) marginal likelihood arising from the Laplace approximation and the prior. The result is a closed-form expression similar to BIC, but now involves a term arising from the prior distribution (which BIC ignores) and also incorporates the idea that different parameters can have different effective sample sizes (whereas BIC only allows one ov…
Applications and Limitations of Robust Bayesian Bounds and Type II MLE
Three applications of robust Bayesian analysis and three examples of its limitations are given. The applications that are reviewed are the development of an automatic Ockham’s Razor, outlier detection, and analysis of weighted distributions. Limitations of robust Bayesian bounds are highlighted through examples that include analysis of a paranormal experiment and a hierarchical model. This last example shows a disturbing difference between actual hierarchical Bayesian analysis and robust Bayesian bounds, a difference which also arises if, instead, a Type II MLE or empirical Bayes analysis is performed.
Criteria for Bayesian model choice with application to variable selection
In objective Bayesian model selection, no single criterion has emerged as dominant in defining objective prior distributions. Indeed, many criteria have been separately proposed and utilized to propose differing prior choices. We first formalize the most general and compelling of the various criteria that have been suggested, together with a new criterion. We then illustrate the potential of these criteria in determining objective model selection priors by considering their application to the problem of variable selection in normal linear models. This results in a new model selection objective prior with a number of compelling properties.
Objective Priors for Discrete Parameter Spaces
This article considers the development of objective prior distributions for discrete parameter spaces. Formal approaches to such development—such as the reference prior approach—often result in a constant prior for a discrete parameter, which is questionable for problems that exhibit certain types of structure. To take advantage of structure, this article proposes embedding the original problem in a continuous problem that preserves the structure, and then using standard reference prior theory to determine the appropriate objective prior. Four different possibilities for this embedding are explored, and applied to a population-size model, the hypergeometric distribution, the multivariate hy…
Incorporating Uncertainties into Traffic Simulators
Reference Priors in a Variance Components Problem
The ordered group reference prior algorithm of Berger and Bernardo (1989b) is applied to the balanced variance components problem. Besides the intrinsic interest of developing good noninformative priors for the variance components problem, a number of theoretically interesting issues arise in application of the proposed procedure. The algorithm is described (for completeness) in an important special case, with a detailed heuristic motivation.
A Bayesian analysis of the thermal challenge problem
Abstract A major question for the application of computer models is Does the computer model adequately represent reality? Viewing the computer models as a potentially biased representation of reality, Bayarri et al. [M. Bayarri, J. Berger, R. Paulo, J. Sacks, J. Cafeo, J. Cavendish, C. Lin, J. Tu, A framework for validation of computer models, Technometrics 49 (2) (2007) 138–154] develop the simulator assessment and validation engine ( SAVE ) method as a general framework for answering this question. In this paper, we apply the SAVE method to the challenge problem which involves a thermal computer model designed for certain devices. We develop a statement of confidence that the devices mode…
Rejoinder on: Natural Induction: An Objective Bayesian Approach
Giron and Moreno. We certainly agree with Professors Giron and Moreno on the interest in sensitivity of any Bayesian result to changes in the prior. That said, we also consider of considerable pragmatic importance to be able to single out a unique, particular prior which may reasonably be proposed as the reference prior for the problem under study, in the sense that the corresponding posterior of the quantity of interest could be routinely used in practice when no useful prior information is available or acceptable. This is precisely what we have tried to do for the twin problems of the rule of succession and the law of natural induction. The discussants consider the limiting binomial versi…
PROBABILISTIC QUANTIFICATION OF HAZARDS: A METHODOLOGY USING SMALL ENSEMBLES OF PHYSICS-BASED SIMULATIONS AND STATISTICAL SURROGATES
This paper presents a novel approach to assessing the hazard threat to a locale due to a large volcanic avalanche. The methodology combines: (i) mathematical modeling of volcanic mass flows; (ii) field data of avalanche frequency, volume, and runout; (iii) large-scale numerical simulations of flow events; (iv) use of statistical methods to minimize computational costs, and to capture unlikely events; (v) calculation of the probability of a catastrophic flow event over the next T years at a location of interest; and (vi) innovative computational methodology to implement these methods. This unified presentation collects elements that have been separately developed, and incorporates new contri…
Overall Objective Priors
In multi-parameter models, reference priors typically depend on the parameter or quantity of interest, and it is well known that this is necessary to produce objective posterior distributions with optimal properties. There are, however, many situations where one is simultaneously interested in all the parameters of the model or, more realistically, in functions of them that include aspects such as prediction, and it would then be useful to have a single objective prior that could safely be used to produce reasonable posterior inferences for all the quantities of interest. In this paper, we consider three methods for selecting a single objective prior and study, in a variety of problems incl…
An overview of robust Bayesian analysis
Robust Bayesian analysis is the study of the sensitivity of Bayesian answers to uncertain inputs. This paper seeks to provide an overview of the subject, one that is accessible to statisticians outside the field. Recent developments in the area are also reviewed, though with very uneven emphasis. © 1994 SEIO.
Natural induction: An objective bayesian approach
The statistical analysis of a sample taken from a finite population is a classic problem for which no generally accepted objective Bayesian results seem to exist. Bayesian solutions to this problem may be very sensitive to the choice of the prior, and there is no consensus as to the appropriate prior to use.
M.J. (Susie) Bayarri
Using Statistical and Computer Models to Quantify Volcanic Hazards
Risk assessment of rare natural hazards, such as large volcanic block and ash or pyroclastic flows, is addressed. Assessment is approached through a combination of computer modeling, statistical modeling, and extreme-event probability computation. A computer model of the natural hazard is used to provide the needed extrapolation to unseen parts of the hazard space. Statistical modeling of the available data is needed to determine the initializing distribution for exercising the computer model. In dealing with rare events, direct simulations involving the computer model are prohibitively expensive. The solution instead requires a combination of adaptive design of computer model approximation…
PValues for Composite Null Models
Abstract The problem of investigating compatibility of an assumed model with the data is investigated in the situation when the assumed model has unknown parameters. The most frequently used measures of compatibility are p values, based on statistics T for which large values are deemed to indicate incompatibility of the data and the model. When the null model has unknown parameters, p values are not uniquely defined. The proposals for computing a p value in such a situation include the plug-in and similar p values on the frequentist side, and the predictive and posterior predictive p values on the Bayesian side. We propose two alternatives, the conditional predictive p value and the partial…