0000000000000988

AUTHOR

Evelyna Derhovanessian

Abstract A004: Systemic RNA vaccines: Connecting effective cancer immunotherapy with antiviral defense mechanisms

Abstract Mechanisms of antiviral host defense are important for survival and evolutionarily optimized for high sensitivity and potency. Intending to harvest the multitude of highly specialized and intertwined pathogen immune defense programs for cancer immunotherapy, we simulated a systemic pathogen intrusion into the blood stream by intravenous injection of lipid-formulated, tumor antigen-encoding mRNA nanoparticles. These RNA-lipoplexes (RNA-LPX) were directed to various lymphoid tissues, including the spleen, lymph nodes and bone marrow, which provide the ideal microenvironment for efficient priming and amplification of T cell responses. Solely the RNA-to-lipid ratio was discovered to de…

research product

Abstract CT034: A first-in-human phase I/II clinical trial assessing novel mRNA-lipoplex nanoparticles for potent melanoma immunotherapy

Abstract Therapeutic vaccination with tumor antigen-encoding RNAs by local administration is currently being successfully employed in various clinical trials. Advancing from local to more efficient systemic targeting of antigen-presenting cells (APCs), we have developed pioneering RNA-lipoplex (RNA(LIP)) immunotherapeutics for intravenous application based on the employment of well-known lipid carriers without the need for functionalization of particles with molecular ligands. The novel RNA(LIP) formulation has been engineered to preserve RNA integrity after intravenous injection and physicochemically optimized for efficient uptake and expression of the encoded antigen by APCs in various ly…

research product

Abstract CT202: IVAC MUTANOME: Individualized vaccines for the treatment of cancer

Abstract Cancer arises from the accumulation of genomic alterations and epigenetic changes that constitute a hallmark of cancer. Owing to the molecular heterogeneity in cancer, only a minor fraction of patients profit from approved therapies. Available targeted therapies can only address alterations common to a particular type of cancer and induce transient effects due to the generation of resistant sub-clones. In contrast, the IVAC MUTANOME project aims to immunologically target multiple cancer mutations uniquely expressed in a given patient's tumor. The IVAC MUTANOME approach should be applicable to the majority of patients irrespective of the tumor entity and offers the potential to expl…

research product

BNT162b2 induces SARS-CoV-2-neutralising antibodies and T cells in humans

BNT162b2, a lipid nanoparticle (LNP) formulated nucleoside-modified messenger RNA (mRNA) encoding the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (S) stabilized in the prefusion conformation, has demonstrated 95% efficacy to prevent coronavirus disease 2019 (COVID-19). Recently, we reported preliminary BNT162b2 safety and antibody response data from an ongoing placebo-controlled, observer-blinded phase 1/2 vaccine trial1. We present here antibody and T cell responses from a second, non-randomized open-label phase 1/2 trial in healthy adults, 19-55 years of age, after BNT162b2 prime/boost vaccination at 1 to 30 µg dose levels. BNT162b2 elicited strong antibody …

research product

Abstract CT032: A first-in-human phase I/II clinical trial assessing novel mRNA-lipoplex nanoparticles for potent cancer immunotherapy in patients with malignant melanoma

Abstract Immunotherapeutic approaches have evolved as promising and valid alternatives to available conventional cancer treatments. Amongst others, vaccination with tumor antigen-encoding RNAs by local administration is currently successfully employed in various clinical trials. To allow for a more efficient targeting of antigen-presenting cells (APCs) and to overcome potential technical challenges associated with local administration, we have developed a novel RNA immunotherapeutic for systemic application based on a fixed set of four liposome complexed RNA drug products (RNA(LIP)), each encoding one shared melanoma-associated antigen. The novel RNA(LIP) formulation was engineered (i) to p…

research product

Immune profiling of Alzheimer patients

Abstract Alzheimer's disease (AD) is characterized by extracellular senile plaques in the brain, containing amyloid-β peptide (Aβ). We identify immunological differences between AD patients and age-matched controls greater than those related to age itself. The biggest differences were in the CD4 + rather than the CD8 + T cell compartment resulting in lower proportions of naive cells, more late-differentiated cells and higher percentages of activated CD4 + CD25 + T cells without a Treg phenotype in AD patients. Changes to CD4 + cells might be the result of chronic stimulation by Aβ present in the blood. These findings have implications for diagnosis and understanding the aetiology of the dis…

research product

Immunosenescence and Cytomegalovirus

Since Looney at al. published their seminal paper a decade ago [1] it has become clear that many of the differences in T cell immunological parameters observed between young and old people are related to the age-associated increasing prevalence of infection with the persistent β-herpesvirus HHV-5 (Cytomegalovirus). Ten years later, studies suggest that hallmark age-associated changes in peripheral blood T cell subset distribution may not occur at all in people who are not infected with this virus [[2]; Derhovanessian et al., in press]. Whether the observed changes are actually caused by CMV is an open question, but very similar, rapid changes observed in uninfected patients receiving CMV-in…

research product

A shared tumor-antigen RNA-lipoplex vaccine with/without anti-PD1 in patients with checkpoint-inhibition experienced melanoma.

3136 Background: Cancer vaccines are considered unsuitable for patients with advanced tumours and have not been clinically successful. Methods: Lipo-MERIT is an ongoing phase 1/2 trial (NCT02410733) with melanoma FixVac, a liposomal RNA vaccine targeting four non-mutant shared tumour-associated antigens (TAAs) (MAGE-A3, NY-ESO-1, tyrosinase, TPTE). Patients with stage IIIB-C and IV melanoma are eligible. The trial comprises 7 dose escalation and 3 dose expansion cohorts, the latter with FixVac alone or combined with anti-PD1. Eight doses of FixVac are administered i.v. weekly/bi-weekly followed by optional continued monthly treatment. This abstract summarizes the findings of an exploratory…

research product

Abstract CT156: A first-in-human phase I/II clinical trial assessing novel mRNA-lipoplex nanoparticles encoding shared tumor antigens for immunotherapy of malignant melanoma

Abstract Therapeutic vaccination with tumor antigen-encoding RNAs is being investigated in various clinical trials. Typically, the RNA vaccine is administered intradermally, subcutaneously or intranodally with the intention to get expression of the encoded antigens in local antigen-presenting cells (APCs). We have developed a novel class of RNA-lipoplex (RNA(LIP)) immunotherapeutics for intravenous application, which allow systemic targeting of APCs. RNA(LIP) is a novel nanoparticulate formulation of lipid-complexed mRNA which selectively delivers the functional mRNA to APCs in lymphoid compartments body-wide for efficient mRNA uptake and expression of the encoded antigen by APCs. Moreover,…

research product

Abstract CT022: IVAC® MUTANOME - A first-in-human phase I clinical trial targeting individual mutant neoantigens for the treatment of melanoma

Abstract One of the hallmarks of cancer is the inherent instability of the genome leading to multiple genomic alterations and epigenetic changes that ultimately drive carcinogenesis. These processes lead to a unique molecular profile of every given tumor and to substantial intratumoral heterogeneity of cancer tissues. Recently, a series of independent reports revealed that pre-formed neoantigen specific T-cell responses are of crucial relevance for the clinical efficacy of immune checkpoint inhibitors. However, spontaneous immune recognition of neoantigens seems to be a rare event with only less than 1% of mutations inducing a T-cell response in the tumor-bearing patient. Accordingly, only …

research product

549 An RNA-lipoplex (RNA-LPX) vaccine demonstrates strong immunogenicity and promising clinical activity in a Phase I trial in cutaneous melanoma patients with no evidence of disease at trial inclusion

BackgroundLipo-MERIT is an ongoing, first-in-human, open-label, dose-escalation Phase I trial investigating safety, tolerability and immunogenicity of BNT111 in patients with advanced melanoma. BNT111 is an RNA-LPX vaccine targeting the melanoma tumor-associated antigens (TAAs) New York esophageal squamous cell carcinoma 1 (NY-ESO-1), tyrosinase, melanoma-associated antigen 3 (MAGE-A3), and transmembrane phosphatase with tensin homology (TPTE). A previous exploratory interim analysis showed that BNT111, alone or combined with immune checkpoint inhibition (CPI), has a favorable adverse event (AE) profile, gives rise to antigen-specific T-cell responses and induces durable objective responses…

research product

Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer

T cells directed against mutant neo-epitopes drive cancer immunity. However, spontaneous immune recognition of mutations is inefficient. We recently introduced the concept of individualized mutanome vaccines and implemented an RNA-based poly-neo-epitope approach to mobilize immunity against a spectrum of cancer mutations. Here we report the first-in-human application of this concept in melanoma. We set up a process comprising comprehensive identification of individual mutations, computational prediction of neo-epitopes, and design and manufacturing of a vaccine unique for each patient. All patients developed T cell responses against multiple vaccine neo-epitopes at up to high single-digit p…

research product

Abstract B041: A novel nanoparticular formulated tetravalent RNA cancer vaccine for treatment of patients with malignant melanoma

Abstract Immunotherapeutic approaches have evolved as promising and valid alternatives to available conventional cancer treatments. Amongst others, vaccination with tumor antigen-encoding RNAs by local administration is currently successfully employed in various clinical trials. To allow for a more efficient targeting of antigen-presenting cells (APCs) we have developed a novel RNA immunotherapeutic for systemic application based on a fixed set of four liposome complexed RNA drug products (RNA(LIP)) each encoding one shared melanoma-associated antigen. Similar to other liposomal drugs, the four injectable RNA(LIP) products constituting the investigational medicinal product will be prepared …

research product

Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy

Lymphoid organs, in which antigen presenting cells (APCs) are in close proximity to T cells, are the ideal microenvironment for efficient priming and amplification of T-cell responses. However, the systemic delivery of vaccine antigens into dendritic cells (DCs) is hampered by various technical challenges. Here we show that DCs can be targeted precisely and effectively in vivo using intravenously administered RNA-lipoplexes (RNA-LPX) based on well-known lipid carriers by optimally adjusting net charge, without the need for functionalization of particles with molecular ligands. The LPX protects RNA from extracellular ribonucleases and mediates its efficient uptake and expression of the encod…

research product

Abstract CT301: A phase Ib study to evaluate RO7198457, an individualized Neoantigen Specific immunoTherapy (iNeST), in combination with atezolizumab in patients with locally advanced or metastatic solid tumors

Abstract Background: Neoantigens arising from somatic mutations are attractive targets for cancer immunotherapy as they may be recognized as foreign by the immune system. RO7198457, a systemically administered RNA-Lipoplex iNeST was designed to stimulate T cell responses against neoantigens. A first-in-human Phase Ib study of RO7198457, in combination with the aPD-L1 antibody atezolizumab is being conducted in patients with locally advanced or metastatic solid tumors. Methods: RO7198457 is manufactured on a per-patient basis and contains up to 20 tumor-specific neoepitopes. Nine doses of RO7198457 were administered i.v. in weekly and bi-weekly intervals during the 12-week induction stage an…

research product