0000000000001554
AUTHOR
Péter G. Szalay
Analytic calculation of the diagonal Born-Oppenheimer correction within configuration-interaction and coupled-cluster theory
Schemes for the analytic calculation of the diagonal Born-Oppenheimer correction (DBOC) are formulated and implemented for use with general single-reference configuration-interaction and coupled-cluster wave function models. Calculations are reported to demonstrate the convergence of the DBOC with respect to electron-correlation treatment and basis set as well as to investigate the size-consistency error in configuration-interaction calculations of the DBOC. The importance of electron-correlation contributions to the DBOC is illustrated in the computation of the corresponding corrections for the reaction energy and activation barrier of the F + H2 --FH + H reaction as well as of the atomiza…
Spin-restricted open-shell coupled-cluster theory
Spin-restricted CC theory is suggested as a new approach for the treatment of high-spin open-shell systems in CC theory. Spin constraints are imposed on the wave function in the sense that the projected spin eigenvalue equations are fulfilled within the (truncated) excitation space. These constraints allow a reduction in the number of independent amplitudes, thus decreasing the computational cost when implemented efficiently. The approach ensures that the spin expectation value always corresponds to the exact value, though the wave function is (for truncated CC treatments) not rigorously spin-adapted. For the specific case of high-spin doublets, detailed equations are derived for amplitudes…
Perturbative treatment of the electron-correlation contribution to the diagonal Born-Oppenheimer correction.
A perturbative scheme for the treatment of electron-correlation effects on the diagonal Born-Oppenheimer correction (DBOC) is suggested. Utilizing the usual Moller-Plesset partitioning of the Hamiltonian formulas for first and second orders (termed as MP1 and MP2) are obtained by expanding the wave function in the corresponding coupled-cluster expressions for the DBOC[J. Gauss et al., J. Chem. Phys. 125, 144111 (2006)]. The obtained expressions are recast in terms of one- and two-particle density matrices in order to take advantage of existing analytic second-derivative implementations for many-body methods. Test calculations show that both MP1 and MP2 recover large fractions (on average 90…
On the FCNS⇆FC(NS) reaction: A matrix isolation and theoretical study
Abstract The FCNS ⇆ FC(NS) photoisomerization process is a simple model system for molecular switches. Here, we examined the switching processes by experimental and theoretical methods. Prior matrix-isolation IR spectroscopic studies were complemented by matrix-isolation UV spectroscopic measurements to assist the interpretation of the mechanism of the ring closure and opening processes and to verify the accuracy of the computations on the vertical excitation energies. Vertical excitation energies were computed by the EOMEE-CCSD, MCSCF, and MR-CISD methods. Conical intersections were also searched for and three conical intersections along the reaction path FCNS → FC(NS) were located, one co…
Analytic UHF-CCSD(T) second derivatives: implementation and application to the calculation of the vibration-rotation interaction constants of NCO and NCS
An implementation of analytic open-shell UHF-CCSD(T) second derivatives is presented. To demonstrate applicability and test the accuracy of the UHF-CCSD(T) approach for the determination of spectroscopical parameters, vibration-rotation interaction constants were calculated for the ground (12Π) and first electronically excited (12Σ) states of the NCO and NCS radicals. In addition, harmonic vibrational frequencies for both states, the Renner-Teller parameter for the ground state, as well as the 12Π→12Σ excitation energy are reported. While the computed values are in good agreement with reliable experimental information for NCO, most of the data presented for NCS are predictions of quantities…
Equation-of-motion coupled-cluster methods for ionized states with an approximate treatment of triple excitations.
The accuracy of geometries and harmonic vibrational frequencies is evaluated for two equation-of-motion ionization potential coupled-cluster methods including CC3 and CCSDT-3 triples corrections. The first two Sigma states and first Pi state of the N2 +, CO+, CN, and BO diatomic radicals are studied. The calculations show a tendency for the CC3 variant to overestimate the bond lengths and to underestimate the vibrational frequencies, while the CCSDT-3 variant seems to be more reliable. It is also demonstrated that the accuracy of such methods is comparable to sophisticated traditional multireference approaches and the full configuration interaction method.
High-accuracy extrapolated ab initio thermochemistry. II. Minor improvements to the protocol and a vital simplification
The recently developed high-accuracy extrapolated ab initio thermochemistry method for theoretical thermochemistry, which is intimately related to other high-precision protocols such as the Weizmann-3 and focal-point approaches, is revisited. Some minor improvements in theoretical rigor are introduced which do not lead to any significant additional computational overhead, but are shown to have a negligible overall effect on the accuracy. In addition, the method is extended to completely treat electron correlation effects up to pentuple excitations. The use of an approximate treatment of quadruple and pentuple excitations is suggested; the former as a pragmatic approximation for standard cas…
Benchmark Thermochemistry of the Hydroperoxyl Radical
A theoretical estimation of the enthalpy of formation for the hydroperoxyl radical is presented. These results are based on CCSD(T)/aug-cc-pCV5Z calculations extrapolated to the basis-set limit with additional corrections. Anharmonic vibrational zero-point energies, scalar relativistic, spin -orbit coupling, and diagonal BornOppenheimer corrections are further used to correct the extrapolated term energies, as well as various empirical corrections that account for correlation effects not treated at the CCSD(T) level. We estimate that ¢fH° ) 3.66 ( 0.10 kcal mol -1 (¢fH° ) 2.96 ( 0.10 kcal mol -1 ) using several reaction schemes. Significantly, it appears to be necessary to include effects o…
Spin-restricted coupled-cluster theory with triple excitations
Working equations for a spin-restricted coupled-cluster (SR-CC) ansatz with full inclusion of triple excitations are presented. The equations have been derived using a new formulation of the SR-CC theory that is equivalent to the original one but much easier processed and also provides a new interpretation of the underlying concepts of the SR-CC approach. Test calculations with a preliminary SR-CC singles, doubles, triples (SR-CCSDT) implementation indicate that spin-restriction has a rather small effect on the computed energies and that the effects are—as expected—less pronounced than in the case of the CC singles, doubles approximation. The corresponding partially spin-adapted scheme turn…
Coupled-cluster techniques for computational chemistry: The CFOUR program package
An up-to-date overview of the CFOUR program system is given. After providing a brief outline of the evolution of the program since its inception in 1989, a comprehensive presentation is given of its well-known capabilities for high-level coupled-cluster theory and its application to molecular properties. Subsequent to this generally well-known background information, much of the remaining content focuses on lesser-known capabilities of CFOUR, most of which have become available to the public only recently or will become available in the near future. Each of these new features is illustrated by a representative example, with additional discussion targeted to educating users as to classes of …
HEAT: High accuracy extrapolated ab initio thermochemistry.
A theoretical model chemistry designed to achieve high accuracy for enthalpies of formation of atoms and small molecules is described. This approach is entirely independent of experimental data and contains no empirical scaling factors, and includes a treatment of electron correlation up to the full coupled-cluster singles, doubles, triples and quadruples approach. Energies are further augmented by anharmonic zero-point vibrational energies, a scalar relativistic correction, first-order spin-orbit coupling, and the diagonal Born-Oppenheimer correction. The accuracy of the approach is assessed by several means. Enthalpies of formation (at 0 K) calculated for a test suite of 31 atoms and mole…
Equilibrium Geometry of the Ethynyl (CCH) Radical
The equilibrium geometry of the ethynyl (CCH) radical has been obtained using the results of high-level quantum chemical calculations and the available experimental data. In a purely quantum chemical approach, the best theoretical estimates (1.208 A for r C C and 1.061-1.063 A for r C H ) have been obtained from CCSD-(T), CCSDT, MR-AQCC, and full CI calculations with basis sets up to core-polarized pentuple-zeta quality. In a mixed theoretical-experimental approach, empirical equilibrium geometrical parameters (1.207 A for r C C and 1.069 A for r C H ) have been obtained from a least-squares fit to the experimental rotational constants of four isotopomers of CCH which have been corrected fo…
Towards a spin-adapted coupled-cluster theory for high-spin open-shell states
A spin-adapted coupled-cluster (SA-CC) scheme based on the additional consideration of spin constraints is proposed for the quantum chemical treatment of high-spin open-shell cases. Its computational feasibility is demonstrated via a pilot implementation within the singles and doubles approximation. Test calculations indicate that the suggested SA-CC scheme provides results of similar accuracy as the more traditional schemes without spin adaptation.
Code Interoperability and Standard Data Formats in Quantum Chemistry and Quantum Dynamics: The Q5/Q5cost Data Model
Code interoperability and the search for domain-specific standard data formats represent critical issues in many areas of computational science. The advent of novel computing infrastructures such as computational grids and clouds make these issues even more urgent. The design and implementation of a common data format for quantum chemistry (QC) and quantum dynamics (QD) computer programs is discussed with reference to the research performed in the course of two Collaboration in Science and Technology Actions. The specific data models adopted, Q5Cost and D5Cost, are shown to work for a number of interoperating codes, regardless of the type and amount of information (small or large datasets) …
First-principles calculation of electron spin-rotation tensors.
Using Curl's Hamiltonian (Curl, R. F. Mol. Phys. 1965, 9, 585) first-principles calculations at the Hartree-Fock and various coupled-cluster (CC) levels based on a perturbative scheme are reported. The effects of basis-set dependence and electron correlation have been investigated by performing benchmark calculations for a set of radicals comprising 12 species and 14 electronic states. In comparison to experimental results, the electron spin-rotation tensor is obtained with a 10-15% accuracy when using the CC singles and doubles approximation and a triple-zeta quality basis set. Some improvements are seen when triple excitations are considered via the CC singles, doubles, and triples model.
The problem of interoperability: A common data format for quantum chemistry codes
A common format for quantum chemistry (QC), enhancing code interoperability and communication between different programs, has been designed and implemented. An XML-based format, QC-ML, is presented for representing quantities such as geometry, basis set, and so on, while an HDF5-based format is presented for the storage of large binary data files. Some preliminary applications that use the format have been implemented and are also described. This activity was carried out within the COST in Chemistry D23 project “MetaChem,” in the Working Group “A meta-laboratory for code integration in ab initio methods.” © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007
Spin-restricted open-shell coupled-cluster theory for excited states
Using a linear-response approach, the recently introduced spin-restricted coupled-cluster (SR-CC) theory is extended to the treatment of excited states of high-spin open-shell molecules. Explicit equations are given within the usual singles and doubles approximation and our implementation (within an existing spin–orbital code) is described. It is shown that in SR-CC theory, due to spin constraints, the spin-expectation value for the excited states calculated as corresponding energy derivatives always corresponds to the exact value. In addition, the SR-CC singles and doubles (SR-CCSD) approach is extended to include also the so-called pseudotriple excitations (best described as double excita…