0000000000001555
AUTHOR
Attila Tajti
Analytic calculation of the diagonal Born-Oppenheimer correction within configuration-interaction and coupled-cluster theory
Schemes for the analytic calculation of the diagonal Born-Oppenheimer correction (DBOC) are formulated and implemented for use with general single-reference configuration-interaction and coupled-cluster wave function models. Calculations are reported to demonstrate the convergence of the DBOC with respect to electron-correlation treatment and basis set as well as to investigate the size-consistency error in configuration-interaction calculations of the DBOC. The importance of electron-correlation contributions to the DBOC is illustrated in the computation of the corresponding corrections for the reaction energy and activation barrier of the F + H2 --FH + H reaction as well as of the atomiza…
Perturbative treatment of the electron-correlation contribution to the diagonal Born-Oppenheimer correction.
A perturbative scheme for the treatment of electron-correlation effects on the diagonal Born-Oppenheimer correction (DBOC) is suggested. Utilizing the usual Moller-Plesset partitioning of the Hamiltonian formulas for first and second orders (termed as MP1 and MP2) are obtained by expanding the wave function in the corresponding coupled-cluster expressions for the DBOC[J. Gauss et al., J. Chem. Phys. 125, 144111 (2006)]. The obtained expressions are recast in terms of one- and two-particle density matrices in order to take advantage of existing analytic second-derivative implementations for many-body methods. Test calculations show that both MP1 and MP2 recover large fractions (on average 90…
On the FCNS⇆FC(NS) reaction: A matrix isolation and theoretical study
Abstract The FCNS ⇆ FC(NS) photoisomerization process is a simple model system for molecular switches. Here, we examined the switching processes by experimental and theoretical methods. Prior matrix-isolation IR spectroscopic studies were complemented by matrix-isolation UV spectroscopic measurements to assist the interpretation of the mechanism of the ring closure and opening processes and to verify the accuracy of the computations on the vertical excitation energies. Vertical excitation energies were computed by the EOMEE-CCSD, MCSCF, and MR-CISD methods. Conical intersections were also searched for and three conical intersections along the reaction path FCNS → FC(NS) were located, one co…
Can coupled-cluster theory treat conical intersections?
Conical intersections between electronic states are of great importance for the understanding of radiationless ultrafast relaxation processes. In particular, accidental degeneracies of hypersurfaces, i.e., between states of the same symmetry, become increasingly relevant for larger molecular systems. Coupled-cluster theory, including both single and multireference based schemes, offers a size-extensive description of the electronic wave function, but it sacrifices the Hermitian character of the theory. In this contribution, we examine the consequences of anti-Hermitian contributions to the coupling matrix element between near-degenerate states such as linear dependent eigenvectors and compl…
HEAT: High accuracy extrapolated ab initio thermochemistry.
A theoretical model chemistry designed to achieve high accuracy for enthalpies of formation of atoms and small molecules is described. This approach is entirely independent of experimental data and contains no empirical scaling factors, and includes a treatment of electron correlation up to the full coupled-cluster singles, doubles, triples and quadruples approach. Energies are further augmented by anharmonic zero-point vibrational energies, a scalar relativistic correction, first-order spin-orbit coupling, and the diagonal Born-Oppenheimer correction. The accuracy of the approach is assessed by several means. Enthalpies of formation (at 0 K) calculated for a test suite of 31 atoms and mole…
Code Interoperability and Standard Data Formats in Quantum Chemistry and Quantum Dynamics: The Q5/Q5cost Data Model
Code interoperability and the search for domain-specific standard data formats represent critical issues in many areas of computational science. The advent of novel computing infrastructures such as computational grids and clouds make these issues even more urgent. The design and implementation of a common data format for quantum chemistry (QC) and quantum dynamics (QD) computer programs is discussed with reference to the research performed in the course of two Collaboration in Science and Technology Actions. The specific data models adopted, Q5Cost and D5Cost, are shown to work for a number of interoperating codes, regardless of the type and amount of information (small or large datasets) …
The problem of interoperability: A common data format for quantum chemistry codes
A common format for quantum chemistry (QC), enhancing code interoperability and communication between different programs, has been designed and implemented. An XML-based format, QC-ML, is presented for representing quantities such as geometry, basis set, and so on, while an HDF5-based format is presented for the storage of large binary data files. Some preliminary applications that use the format have been implemented and are also described. This activity was carried out within the COST in Chemistry D23 project “MetaChem,” in the Working Group “A meta-laboratory for code integration in ab initio methods.” © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007