0000000000001828
AUTHOR
Gonzalo Mateo-garcia
Statistical biophysical parameter retrieval and emulation with Gaussian processes
Abstract Earth observation from satellites poses challenging problems where machine learning is being widely adopted as a key player. Perhaps the most challenging scenario that we are facing nowadays is to provide accurate estimates of particular variables of interest characterizing the Earth's surface. This chapter introduces some recent advances in statistical bio-geophysical parameter retrieval from satellite data. In particular, we will focus on Gaussian process regression (GPR) that has excelled in parameter estimation as well as in modeling complex radiative transfer processes. GPR is based on solid Bayesian statistics and generally yields efficient and accurate parameter estimates, a…
Domain Adaptation of Landsat-8 and Proba-V Data Using Generative Adversarial Networks for Cloud Detection
Training machine learning algorithms for new satellites requires collecting new data. This is a critical drawback for most remote sensing applications and specially for cloud detection. A sensible strategy to mitigate this problem is to exploit available data from a similar sensor, which involves transforming this data to resemble the new sensor data. However, even taking into account the technical characteristics of both sensors to transform the images, statistical differences between data distributions still remain. This results in a poor performance of the methods trained on one sensor and applied to the new one. In this this work, we propose to use the generative adversarial networks (G…
Proba-V cloud detection Round Robin: Validation results and recommendations
This paper discusses results from 12 months of a Round Robin exercise aimed at the inter-comparison of different cloud detection algorithms for Proba-V. Clouds detection is a critical issue for satellite optical remote sensing, since potential errors in cloud masking directly translates into significant uncertainty in the retrieved downstream geophysical products. Cloud detection is particularly challenging for Proba-V due to the presence of a limited number of spectral bands and the lack of thermal infrared bands. The main objective of the project was the inter-comparison of several cloud detection algorithms for Proba-V over a wide range of surface types and environmental conditions. Prob…
Fair Kernel Learning
New social and economic activities massively exploit big data and machine learning algorithms to do inference on people’s lives. Applications include automatic curricula evaluation, wage determination, and risk assessment for credits and loans. Recently, many governments and institutions have raised concerns about the lack of fairness, equity and ethics in machine learning to treat these problems. It has been shown that not including sensitive features that bias fairness, such as gender or race, is not enough to mitigate the discrimination when other related features are included. Instead, including fairness in the objective function has been shown to be more efficient.
Convolutional Long Short-Term Memory Network for Multitemporal Cloud Detection Over Landmarks
In this work, we propose to exploit both the temporal and spatial correlations in Earth observation satellite images through deep learning methods. In particular, the combination of a U-Net convolutional neural network together with a convolutional long short-term memory (LSTM) layer is proposed. This model is applied for cloud detection on MSG/SEVIRI image time series over selected landmarks. Implementation details are provided and our proposal is compared against a standard SVM and a U-Net without the convolutional LSTM layer but including temporal information too. Experimental results show that this combination of networks exploits both the spatial and temporal dependence and provides st…
Estimating crop primary productivity with Sentinel-2 and Landsat 8 using machine learning methods trained with radiative transfer simulations
Abstract Satellite remote sensing has been widely used in the last decades for agricultural applications, both for assessing vegetation condition and for subsequent yield prediction. Existing remote sensing-based methods to estimate gross primary productivity (GPP), which is an important variable to indicate crop photosynthetic function and stress, typically rely on empirical or semi-empirical approaches, which tend to over-simplify photosynthetic mechanisms. In this work, we take advantage of all parallel developments in mechanistic photosynthesis modeling and satellite data availability for an advanced monitoring of crop productivity. In particular, we combine process-based modeling with …
Towards a novel approach for Sentinel-3 synergistic OLCI/SLSTR cloud and cloud shadow detection based on stereo cloud-top height estimation
Abstract Sentinel-3 is an Earth observation satellite constellation launched by the European Space Agency. Each satellite carries two optical multispectral instruments: the Ocean and Land Colour Instrument (OLCI) and the Sea and Land Surface Temperature Radiometer (SLSTR). OLCI and SLSTR sensors produce images covering the visible and infrared spectrum that can be collocated in order to generate synergistic products. In Earth observation, a particular weakness of optical sensors is their high sensitivity to clouds and their shadows. An incorrect cloud and cloud shadow detection leads to mistakes in both land and ocean retrievals of biophysical parameters. In order to exploit both OLCI and S…
Estrategia de enseñanza y aprendizaje de programación basada en la idea de ’hackathon’
[EN] The acquisition of programming and data analysis skills in higher education is increa-singly necessary in all areas of Science and Engineering. In this paper we present a methodology for the motivation of programming learning, mainly focused on the deve-lopment of machine learning algorithms. This methodology is based on the hackathon idea and will have different levels. On the one hand the basic level where a competition is proposed in an improvised way during the development of the class. A second level where a programmed hackathon is proposed but within the classroom environment and using learning management systems such as Moodle. The last level consists of parti-cipation in an exte…
Flood Detection On Low Cost Orbital Hardware
Satellite imaging is a critical technology for monitoring and responding to natural disasters such as flooding. Despite the capabilities of modern satellites, there is still much to be desired from the perspective of first response organisations like UNICEF. Two main challenges are rapid access to data, and the ability to automatically identify flooded regions in images. We describe a prototypical flood segmentation system, identifying cloud, water and land, that could be deployed on a constellation of small satellites, performing processing on board to reduce downlink bandwidth by 2 orders of magnitude. We target PhiSat-1, part of the FSSCAT mission, which is planned to be launched by the …
Cloud masking and removal in remote sensing image time series
Automatic cloud masking of Earth observation images is one of the first required steps in optical remote sensing data processing since the operational use and product generation from satellite image time series might be hampered by undetected clouds. The high temporal revisit of current and forthcoming missions and the scarcity of labeled data force us to cast cloud screening as an unsupervised change detection problem in the temporal domain. We introduce a cloud screening method based on detecting abrupt changes along the time dimension. The main assumption is that image time series follow smooth variations over land (background) and abrupt changes will be mainly due to the presence of clo…
Transferring deep learning models for cloud detection between Landsat-8 and Proba-V
Abstract Accurate cloud detection algorithms are mandatory to analyze the large streams of data coming from the different optical Earth observation satellites. Deep learning (DL) based cloud detection schemes provide very accurate cloud detection models. However, training these models for a given sensor requires large datasets of manually labeled samples, which are very costly or even impossible to create when the satellite has not been launched yet. In this work, we present an approach that exploits manually labeled datasets from one satellite to train deep learning models for cloud detection that can be applied (or transferred) to other satellites. We take into account the physical proper…