0000000000001881

AUTHOR

Philip Woods

showing 28 related works from this author

Implantation-decay station for low-energy proton measurements

2013

Abstract We have built an implantation-decay station for β - delayed proton and α decay studies at the focal plane of the Momentum Achromat Recoil Spectrometer (MARS) at the Cyclotron Institute of Texas A&M University. Energetic secondary beams with a small momentum spread are stopped in a controlled manner into a very thin silicon strip detector. In addition, high-purity germanium detectors are installed for γ ray detection. Here we give a description of the setup and the observed performance down to E p ≈ 200 keV using implanted 23 Al and 31 Cl sources.

PhysicsNuclear and High Energy PhysicsSiliconProtonSpectrometerPhysics::Instrumentation and DetectorsDetectorCyclotronchemistry.chemical_elementGermaniumlaw.inventionMomentumNuclear physicsRecoilchemistrylawHigh Energy Physics::ExperimentNuclear ExperimentInstrumentationNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Reevaluation of theP30(p,γ)S31astrophysical reaction rate from a study of theT=1/2mirror nuclei,S31andP31

2006

The $^{30}\mathrm{P}$($p,\ensuremath{\gamma}$)$^{31}\mathrm{S}$ reaction rate is expected to be the principal determinant for the endpoint of nucleosynthesis in classical novae. To date, the reaction rate has only been estimated through Hauser-Feschbach calculations and is unmeasured experimentally. This paper aims to remedy this situation. Excited states in $^{31}\mathrm{S}$ and $^{31}\mathrm{P}$ were populated in the $^{12}\mathrm{C}$($^{20}\mathrm{Ne}$,$n$) and $^{12}\mathrm{C}$($^{20}\mathrm{Ne}$,$p$) reactions, respectively, at a beam energy of 32 MeV, and their resulting $\ensuremath{\gamma}$decay was detected with the Gammasphere array. Around half the relevant proton unbound states …

PhysicsNuclear and High Energy PhysicsProtonNucleosynthesisExcited stateCarbon-12GammaspherePhosphorus-31 NMR spectroscopyMirror nucleiAtomic physicsNuclear ExperimentMirror symmetryPhysical Review C
researchProduct

New measurement of the 242Pu(n,γ) cross section at n-TOF-EAR1 for MOX fuels: Preliminary results in the RRR

2016

The spent fuel of current nuclear reactors contains fissile plutonium isotopes that can be combined with 238U to make mixed oxide (MOX) fuel. In this way the Pu from spent fuel is used in a new reactor cycle, contributing to the long-term sustainability of nuclear energy. The use of MOX fuels in thermal and fast reactors requires accurate capture and fission cross sections. For the particular case of 242Pu, the previous neutron capture cross section measurements were made in the 70’s, providing an uncertainty of about 35% in the keV region. In this context, the Nuclear Energy Agency recommends in its “High Priority Request List” and its report WPEC-26 that the capture cross section of 242Pu…

Nuclear reactionnTOFQC1-999Nuclear engineeringContext (language use)CERN nTOFNeutron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energyPhysics and Astronomy (all)Nuclear reactorsReactors nuclears0103 physical sciencesCERNNeutron cross sectionNuclear Physics - ExperimentNeutronddc:530242Pu neutron capture010306 general physicsMOX fuelNeutrons:Energies::Energia nuclear [Àrees temàtiques de la UPC]Fissile materialCross section:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsPhysicsNuclear reactionSpent nuclear fuelNeutron temperature13. Climate actionneutron time-of-flight measurement
researchProduct

First Measurement of Severalβ-Delayed Neutron Emitting Isotopes BeyondN=126

2016

The β-delayed neutron emission probabilities of neutron rich Hg and Tl nuclei have been measured together with β-decay half-lives for 20 isotopes of Au, Hg, Tl, Pb, and Bi in the mass region N≳126. These are the heaviest species where neutron emission has been observed so far. These measurements provide key information to evaluate the performance of nuclear microscopic and phenomenological models in reproducing the high-energy part of the β-decay strength distribution. This provides important constraints on global theoretical models currently used in r-process nucleosynthesis.

PhysicsIsotope010308 nuclear & particles physicsNeutron emissionAstrophysics::High Energy Astrophysical PhenomenaNuclear TheoryGeneral Physics and Astronomy01 natural sciencesMass formulaNuclear physics13. Climate actionNucleosynthesis0103 physical sciencesr-processNeutronNuclear Experiment010306 general physicss-processDelayed neutronPhysical Review Letters
researchProduct

7Be(n,α) and 7Be(n,p) cross-section measurement for the cosmological lithium problem at the n-TOF facility at CERN

2017

One of the most puzzling problems in Nuclear Astrophysics is the “Cosmological Lithium Problem”, i.e the discrepancy between the primordial abundance of \(^{7}\)Li observed in metal poor halo stars (Asplund et al. in Astrophys J 644:229–259, 2006, [1]), and the one predicted by Big Bang Nucleosynthesis (BBN). One of the reactions that could have an impact on the problem is \(^{7}\)Be(n,p)\(^{7}\)Li. Despite of the importance of this reaction in BBN, the cross-section has never been directly measured at the energies of interest for BBN. Taking advantage of the innovative features of the second experimental area at the n\(\_\)TOF facility at CERN (Sabate-Gilarte et al. in Eur Phys J A 53:210,…

AstrofísicanTOFQC1-999chemistry.chemical_elementNeutronAstrophysics01 natural sciences7. Clean energyNuclear physicsPhysics and Astronomy (all)Big Bang nucleosynthesisNucleosynthesisCERN0103 physical sciencesNuclear astrophysicsAstrophysics::Solar and Stellar AstrophysicsNeutron010306 general physicsNuclear ExperimentAstrophysics::Galaxy Astrophysics:Energies::Energia nuclear [Àrees temàtiques de la UPC]NeutronsPhysicsAlphaLarge Hadron Collider:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsPhysicsStarschemistryLithiumHaloNucleosynthesisNucleosíntesi
researchProduct

Proton radioactivity of117La

2001

A new more precise measurement of the ground-state proton decay of ${}^{117}\mathrm{La}$ is presented $[{E}_{p}=806(5) \mathrm{keV},$ ${t}_{1/2,p}=26(3)$ ms]. ${}^{117}\mathrm{La}$ was produced via the $p4n$ fusion-evaporation channel by bombarding a ${}^{64}\mathrm{Zn}$ target with 310 and 295 MeV ${}^{58}\mathrm{Ni}$ beams. The proton decay rate is consistent with emission from a prolate deformed ${3/2}^{+}$ or ${3/2}^{\ensuremath{-}}$ Nilsson state. No evidence is found for a previously reported proton decay from a high spin isomer in ${}^{117}\mathrm{La}.$ An upper limit for the production cross section for proton decay of ${}^{116}\mathrm{La}$ at a bombarding energy of 325 MeV was esta…

PhysicsNuclear and High Energy PhysicsProtonProton decayNuclear TheoryProlate spheroidNuclear physicsPhysics::Accelerator PhysicsProduction (computer science)Proton emissionAtomic physicsNuclear ExperimentEnergy (signal processing)Spin-½Physical Review C
researchProduct

The n_TOF facility: Neutron beams for challenging future measurements at CERN

2016

The CERN n TOF neutron beam facility is characterized by a very high instantaneous neutron flux, excellent TOF resolution at the 185 m long flight path (EAR-1), low intrinsic background and coverage of a wide range of neutron energies, from thermal to a few GeV. These characteristics provide a unique possibility to perform high-accuracy measurements of neutron-induced reaction cross-sections and angular distributions of interest for fundamental and applied Nuclear Physics. Since 2001, the n TOF Collaboration has collected a wealth of high quality nuclear data relevant for nuclear astrophysics, nuclear reactor technology, nuclear medicine, etc. The overall efficiency of the experimental prog…

AstrofísicanTOF[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]QC1-999Nuclear TheoryNeutronAstrophysics01 natural sciences7. Clean energylaw.inventionNuclear physicsPhysics and Astronomy (all)Neutron fluxlaw0103 physical sciencesCERNNuclear astrophysicsNeutronSpallation010306 general physicsNuclear ExperimentPhysics:Energies::Energia nuclear [Àrees temàtiques de la UPC]NeutronsLarge Hadron Collider:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsPhysicsNuclear dataNuclear reactorNeutron radiationAccelerators and Storage Rings3. Good health13. Climate action
researchProduct

Approaching the precursor nuclei of the third r-process peak with RIBs

2013

The rapid neutron nucleosynthesis process involves an enormous amount of very exotic neutron-rich nuclei, which represent a theoretical and experimental challenge. Two of the main decay properties that affect the final abundance distribution the most are half-lives and neutron branching ratios. Using fragmentation of a primary $^{238}$U beam at GSI we were able to measure such properties for several neutron-rich nuclei from $^{208}$Hg to $^{218}$Pb. This contribution provides a short update on the status of the data analysis of this experiment, together with a compilation of the latest results published in this mass region, both experimental and theoretical. The impact of the uncertainties …

HistoryNeutron emissionNuclear TheoryFOS: Physical sciencesNeutronPhysics and Astronomy(all)nucl-ex01 natural sciences530EducationNuclear physicsNucleosynthesis/dk/atira/pure/subjectarea/asjc/31000103 physical sciencesNuclear Physics - Experimentddc:530NeutronNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear ExperimentPhysicsNeutrons:Energies::Energia nuclear [Àrees temàtiques de la UPC]010308 nuclear & particles physicsBranching fractionNuclear energyComputer Science ApplicationsUranium-238r-processEnergia nuclears-processNucleosynthesisRadioactive decay
researchProduct

Commissioning of the BRIKEN beta-delayed neutron detector for the study of exotic neutron-rich nuclei

2017

Beta-delayed neutron emission (Beta-n) is a form of radioactive decay in which an electron, an anti-neutrino and one or more neutrons are emitted. This process arises if the energy window of the decay Q_Beta is greater than the neutron separation energy S n of the daughter. The probability in each decay of emitting neutrons is called the Pn value. This form of decay plays a key role in the synthesis of chemical elements in the Universe via the rapid neutron capture process, or r-process. The r-process proceeds far from the valley of nuclear stability, and leads to very neutron-rich nuclei that then decay to the line of stability. Most of these nuclei are ßn emitters. The initial abundance d…

AstrofísicaNeutron emissionQC1-999Astrophysics::High Energy Astrophysical PhenomenaNeutron detectorNuclear TheoryElectronNeutronAstrophysics01 natural sciencesNuclear physics0103 physical sciencesNeutron detectionNeutron010306 general physicsNuclear ExperimentDelayed neutronsPhysics:Energies::Energia nuclear [Àrees temàtiques de la UPC]Neutrons:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsPhysicsNuclear structureDetectorNeutron captureDelayed neutronRadioactive decay
researchProduct

Be7(n,α)He4Reaction and the Cosmological Lithium Problem: Measurement of the Cross Section in a Wide Energy Range at n_TOF at CERN

2016

The energy-dependent cross section of the (7)Bed(n,alpha)He-4 reaction, of interest for the so-called cosmological lithium problem in big bang nucleosynthesis, has been measured for the first time from 10 meV to 10 keV neutron energy. The challenges posed by the short half-life of Be-7 and by the low reaction cross section have been overcome at n_TOF thanks to an unprecedented combination of the extremely high luminosity and good resolution of the neutron beam in the new experimental area (EAR2) of the n_TOF facility at CERN, the availability of a sufficient amount of chemically pure Be-7, and a specifically designed experimental setup. Coincidences between the two alpha particles have been…

Nuclear reactionPhysics010308 nuclear & particles physicsGeneral Physics and Astronomychemistry.chemical_elementAlpha particleNeutron radiation7. Clean energy01 natural sciencesNeutron temperatureNuclear physicsBig Bang nucleosynthesischemistry13. Climate actionNucleosynthesis0103 physical sciencesNeutronLithiumNuclear Experiment010306 general physicsPhysical Review Letters
researchProduct

Mirror energy differences in theA=31mirror nuclei,S31andP31, and their significance in electromagnetic spin-orbit splitting

2005

Excited states in $^{31}\mathrm{S}$ and $^{31}\mathrm{P}$ were populated in the $^{12}\mathrm{C}$($^{20}\mathrm{Ne}$,n) and $^{12}\mathrm{C}$($^{20}\mathrm{Ne}$,p) reactions, respectively, at a beam energy of 32 MeV. High spin states of positive and negative parity have been observed in $^{31}\mathrm{S}$ for the first time, and the yrast scheme of $^{31}\mathrm{P}$ has been extended. Large mirror energy differences between the first $9/{2}^{\ensuremath{-}}$ and $13/{2}^{\ensuremath{-}}$ states were observed, but only small differences for the first $7/{2}^{\ensuremath{-}}$ and $11/{2}^{\ensuremath{-}}$ levels. The significance of these observations is discussed in relation to the electromag…

PhysicsNuclear and High Energy PhysicsSpin statesYrastExcited stateBinding energyParity (physics)Phosphorus-31 NMR spectroscopyNeutronMirror nucleiAtomic physicsPhysical Review C
researchProduct

Decay of the key 92-keV resonance in the 25Mg(p,γ) reaction to the ground and isomeric states of the cosmic γ-ray emitter 26Al

2021

Abstract The 92-keV resonance in the 25Mg ( p , γ ) 26 Al reaction plays a key role in the production of 26Al at astrophysical burning temperatures of ≈100 MK in the Mg-Al cycle. However, the state can decay to feed either the ground, 26 g Al, or isomeric state, 26 m Al. It is the ground state that is critical as the source of cosmic γ rays. It is therefore important to precisely determine the ground-state branching fraction f 0 of this resonance. Here we report on the identification of four γ-ray transitions from the 92-keV resonance, and determine the spin of the state and its ground-state branching fraction f 0 = 0.52 ( 2 ) s t a t ( 6 ) s y s t . The f 0 value is the most precise report…

Nuclear and High Energy Physicsγ spectroscopyastrofysiikkaAstrophysics::High Energy Astrophysical Phenomenanuclear astrophysics01 natural sciences7. Clean energy0103 physical sciencesNuclear astrophysics010306 general physicsSpin (physics)PhysicsRange (particle radiation)COSMIC cancer database010308 nuclear & particles physicsBranching fractionResonanceState (functional analysis)lcsh:QC1-99926Alcosmic γ raysNuclear astrophysicsCosmic γ raysAtomic physicsydinfysiikkaGround statekosminen säteilylcsh:Physics
researchProduct

Candidate superdeformed band in 28Si

2012

Nuclear physicsPhysicsNuclear and High Energy Physicsta114Radiative capturePhysical review C
researchProduct

The 33S(n,α)30Si cross section measurement at n TOF-EAR2 (CERN): From 0.01 eV to the resonance region

2017

The 33S(n,α)30Si cross section measurement, using 10B(n,α) as reference, at the n TOF Experimental Area 2 (EAR2) facility at CERN is presented. Data from 0.01 eV to 100 keV are provided and, for the first time, the cross section is measured in the range from 0.01 eV to 10 keV. These data may be used for a future evaluation of the cross section because present evaluations exhibit large discrepancies. The 33S(n,α)30Si reaction is of interest in medical physics because of its possible use as a cooperative target to boron in Neutron Capture Therapy (NCT).

Nuclear reactionnTOFNeutron therapyQC1-999chemistry.chemical_elementNeutron01 natural sciencesResonance (particle physics)Nuclear physicsCross section (physics)Physics and Astronomy (all)0103 physical sciencesCERNNeutronddc:530010306 general physicsBoronPhysicsNeutrons:Energies::Energia nuclear [Àrees temàtiques de la UPC]Range (particle radiation)Large Hadron Collidercross sectionReaccions nuclears:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsPhysicsNuclear reactionNeutron capturechemistryNuclear reactions
researchProduct

FIRST RESULTS WITH THE RISING ACTIVE STOPPER

2008

This paper outlines some of the physics opportunities available with the GSI RISING active stopper and presents preliminary results from an experiment aimed at performing beta-delayed gamma-ray spectroscopic studies in heavy-neutron-rich nuclei produced following the projectile fragmentation of a 1 GeV per nucleon 208 Pb primary beam. The energy response of the silicon active stopping detector for both heavy secondary fragments and beta-particles is demonstrated and preliminary results on the decays of neutron-rich Tantalum ( Ta ) to Tungsten ( W ) isotopes are presented as examples of the potential of this technique to allow new structural studies in hitherto experimentally unreachable he…

PhysicsNuclear and High Energy PhysicsNuclear TheoryTantalumGeneral Physics and Astronomychemistry.chemical_elementTungstenNuclear physicschemistryExcited stateGamma spectroscopyAtomic physicsNuclear ExperimentGround stateSpectroscopyNucleonBeam (structure)International Journal of Modern Physics E
researchProduct

Proton Decay of an Intruder State inB185i

1996

The new proton radioactivity ${}^{185m}\mathrm{Bi}$ has been observed, produced via the ${}^{95}\mathrm{Mo}{(}^{92}\mathrm{Mo},pn{)}^{185}\mathrm{Bi}$ reaction. Its decay proceeds from the low-lying ${\frac{1}{2}}^{+}$ intruder state in ${}^{185}\mathrm{Bi}$ to the ${}^{184}\mathrm{Pb}$ ground state with the emission of a proton of energy $1.585\ifmmode\pm\else\textpm\fi{}0.009\mathrm{MeV}$ and a half-life of $44\ifmmode\pm\else\textpm\fi{}16\ensuremath{\mu}\mathrm{s}$. This marks the first observation of proton radioactivity above the $Z\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}82$ closed shell, and it has been used to obtain the admixture of a ${0}^{+}$ intruder state in ${}^{184…

PhysicsProtonProton decayGeneral Physics and AstronomyAtomic physicsGround stateWave functionEnergy (signal processing)Intruder statePhysical Review Letters
researchProduct

Proton decay of 108I and its significance for the termination of the astrophysical rp-process

2019

Abstract Employing the Argonne Fragment Mass Analyzer and the implantation-decay-decay correlation technique, a weak 0.50(21)% proton decay branch was identified in 108I for the first time. The 108I proton-decay width is consistent with a hindered l = 2 emission, suggesting a d 5 2 origin. Using the extracted 108I proton-decay Q value of 597(13) keV, and the Q α values of the 108I and 107Te isotopes, a proton-decay Q value of 510(20) keV for 104Sb was deduced. Similarly to the 112,113Cs proton-emitter pair, the Q p ( I 108 ) value is lower than that for the less-exotic neighbor 109I, possibly due to enhanced proton-neutron interactions in N ≈ Z nuclei. In contrast, the present Q p ( Sb 104 …

Nuclear and High Energy Physicsalpha decayProton decayQ valueastrofysiikkaNuclear Theory104Sb01 natural sciencesastrophysical rp process108I0103 physical sciencesMass analyzer107Te010306 general physicsNuclear ExperimentPhysicsIsotopeta114010308 nuclear & particles physicsInteraction energyrp-processlcsh:QC1-999proton decayHigh Energy Physics::ExperimentAtomic physicsydinfysiikkalcsh:PhysicsPhysics Letters B
researchProduct

The Miniball spectrometer

2013

The Miniball germanium detector array has been operational at the REX (Radioactive ion beam EXperiment) post accelerator at the Isotope Separator On-Line facility ISOLDE at CERN since 2001. During the last decade, a series of successful Coulomb excitation and transfer reaction studies have been performed with this array, utilizing the unique and high-quality radioactive ion beams which are available at ISOLDE. In this article, an overview is given of the technical details of the full Miniball setup, including a description of the γ-ray and particle detectors, beam monitoring devices and methods to deal with beam contamination. The specific timing properties of the REX-ISOLDE facility are hi…

Radioactive ion beamsNuclear and High Energy PhysicsIon beamREX-ISOLDEONLINECoulomb excitation[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesNuclear physicsSETUPCOULOMB-EXCITATION0103 physical sciencesNuclear fusionSILICON STRIP DETECTOR[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]RELATIVISTIC ENERGIES010306 general physicsNuclear ExperimentNEUTRON KNOCKOUTPhysicsNuclear Physics; Heavy Ions; Hadrons; Particle and Nuclear Physics; Nuclear FusionLarge Hadron ColliderSpectrometerNUCLEI010308 nuclear & particles physicsDetectorRADIOACTIVE ION-BEAMSemiconductor detectorPhysics::Accelerator PhysicsGE DETECTORS
researchProduct

β -decay half-lives and β -delayed neutron emission probabilities for several isotopes of Au, Hg, Tl, Pb, and Bi, beyond N=126

2017

Background: Previous measurements of Beta-delayed neutron emitters comprise around 230 nuclei, spanning from the 8He up to 150La. Apart from 210Tl, with a minuscule branching ratio of 0.07%, no other neutron emitter is measured yet beyond A = 150. Therefore new data are needed, particularly in the heavy mass region around N=126, in order to guide theoretical models and to understand the formation of the third r-process peak at A 195. Purpose: To measure both, Beta-decay half-lives and neutron branching ratios of several neutron-rich Au, Hg, Tl, Pb and Bi isotopes beyond N = 126. Method: Ions of interest are produced by fragmentation of a 238U beam, selected and identifed via the GSI-FRS fra…

PhysicsIsotope010308 nuclear & particles physicsBranching fraction01 natural sciences7. Clean energyIon0103 physical sciencesNeutron detectionr-processNeutronAtomic physics010306 general physicss-processDelayed neutronPhysical Review C
researchProduct

The measurement programme at the neutron time-of-flight facility n_TOF at CERN

2016

Neutron-induced reaction cross sections are important for a wide variety of research fields ranging from the study of nuclear level densities, nucleosynthesis to applications of nuclear technology like design, and criticality and safety assessment of existing and future nuclear reactors, radiation dosimetry, medical applications, nuclear waste transmutation, accelerator-driven systems and fuel cycle investigations. Simulations and calculations of nuclear technology applications largely rely on evaluated nuclear data libraries. The evaluations in these libraries are based both on experimental data and theoretical models. CERN’s neutron time-of-flight facility n TOF has produced a considerabl…

EngineeringNuclear transmutationQC1-999Nuclear engineering[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural sciencesNuclear physicsPhysics and Astronomy (all)0103 physical sciences:Física::Electromagnetisme [Àrees temàtiques de la UPC]ddc:530Nuclear Physics - ExperimentNeutron010306 general physicsNeutrons:Energies::Energia nuclear [Àrees temàtiques de la UPC]Large Hadron Collider010308 nuclear & particles physicsbusiness.industryPhysicsNuclear dataRadioactive wasteNuclear technologyBeamlineCriticalitybusinessEPJ Web of Conferences
researchProduct

Accelerated radioactive beams from REX-ISOLDE

2003

In 2001 the linear accelerator of the Radioactive beam EXperiment (REX-ISOLDE) delivered for the first time accelerated radioactive ion beams, at a beam energy of 2 MeV/u. REX-ISOLDE uses the method of charge-state breeding, in order to enhance the charge state of the ions before injection into the LINAC. Radioactive singly-charged ions from the on-line mass separator ISOLDE are first accumulated in a Penning trap, then charge bred to an A/q < 4.5 in an electron beam ion source (EBIS) and finally accelerated in a LINAC from 5 keV/u to energies between 0.8 and 2.2 MeV/u. Dedicated measurements with REXTRAP, the transfer line and the EBIS have been carried out in conjunction with the first co…

PhysicsNuclear and High Energy PhysicsPhysics::Instrumentation and DetectorsDetectorPenning trapParticle detectorIon sourceLinear particle acceleratorSemiconductor detectorNuclear physicsPhysics::Accelerator PhysicsNeutronAtomic physicsNuclear ExperimentInstrumentationBeam (structure)
researchProduct

Nuclear pion photoproduction in theΔresonance region

1999

A measurement of the /sup 12/C( gamma , pi /sup +/n)/sup 11/B reaction in quasifree pi -production kinematic regimes has been performed using tagged photons in conjunction with large solid angle pi and n detectors. The aim of the experiment was to investigate predicted modifications to the Delta excitation of nucleons and their subsequent propagation and decay, brought about by the nuclear medium. Differential cross sections are presented for photon energies spanning the Delta (1232) excitation region. The measurements are consistent with distorted wave impulse approximation calculations in which the amplitude for proton Delta excitation, followed by Delta propagation and decay to pi /sup +…

Nuclear physicsPhysicsDeltaNuclear and High Energy PhysicsPionAmplitudePhotonSolid angleImpulse (physics)Atomic physicsNucleonExcitationPhysical Review C
researchProduct

Superallowed Gamow-Teller decay of the doubly magic nucleus $^{100}$Sn

2012

Expérience au GSI; The shell structure of atomic nuclei is associated with 'magic numbers' and originates in the nearly independent motion of neutrons and protons in a mean potential generated by all nucleons. During b1-decay, a proton transforms into a neutron in a previously not fully occupied orbital, emitting a positron-neutrino pair with either parallel or antiparallel spins, in a Gamow-Teller or Fermi transition, respectively. The transition probability, or strength, of a Gamow-Teller transition depends sensitively on the underlying shell structure and is usually distributed among many states in the neighbouring nucleus. Here we report measurements of the half-life and decay energy fo…

PhysicsMultidisciplinaryProton010308 nuclear & particles physicsProton decayNuclear Theory[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesBeta decayNuclear physicsDecay energy0103 physical sciencesAtomic nucleusPhysical SciencesFysikNeutronAtomic physics010306 general physicsNucleonNuclear ExperimentRadioactive decay
researchProduct

β-delayed neutron emission measurements around the third r-process abundance peak

2013

This contribution summarizes an experiment performed at GSI (Germany) in the neutron-rich region beyond N=126. The aim of this measurement is to provide the nuclear physics input of relevance for r-process model calculations, aiming at a better understanding of the third r-process abundance peak. Many exotic nuclei were measured around 211Hg and 215Tl. Final ion identification diagrams are given in this contribution. For most of them, we expect to derive halflives and and β-delayed neutron emission probabilities. The detectors used in this experiment were the Silicon IMplantation and Beta Absorber (SIMBA) detector, based on an array of highly segmented silicon detectors, and the BEta deLayE…

PhysicsNuclear physicsPhysics::Instrumentation and DetectorsNucleosynthesisNeutron emissionDouble beta decayDetectorr-processNuclear ExperimentDelayed neutronAbundance of the chemical elementsIon
researchProduct

Nuclear data activities at the n_TOF facility at CERN

2016

International audience; Nuclear data in general, and neutron-induced reaction cross sections in particular, are important for a wide variety of research fields. They play a key role in the safety and criticality assessment of nuclear technology, not only for existing power reactors but also for radiation dosimetry, medical applications, the transmutation of nuclear waste, accelerator-driven systems, fuel cycle investigations and future reactor systems as in Generation IV. Applications of nuclear data are also related to research fields as the study of nuclear level densities and stellar nucleosynthesis. Simulations and calculations of nuclear technology applications largely rely on evaluate…

Nuclear reactionU-235Nuclear transmutationnTOFCAPTURE CROSS-SECTIONNuclear dataTOTAL ABSORPTION CALORIMETERGeneral Physics and Astronomy[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]COLLABORATION7. Clean energy01 natural sciences3100PHYSICSNuclear physicsPhysics and Astronomy (all)neutronDESIGNRadiation dosimetry0103 physical sciencesCERNn_TOFNuclear Physics - ExperimentNeutron010306 general physicsnuclear data n_TOF CERNPhysics:Energies::Energia nuclear [Àrees temàtiques de la UPC]NeutronsFRAGMENT ANGULAR-DISTRIBUTIONLarge Hadron Colliderntof:Física [Àrees temàtiques de la UPC]Cross section010308 nuclear & particles physicscernExperimental dataRadioactive wasteNuclear datanuclear dataNATURAL SCIENCES. Physics.Radiació--DosimetriaPRIRODNE ZNANOSTI. Fizika.Nuclear technologyCAPTURE CROSS-SECTION TOTAL ABSORPTION CALORIMETER FRAGMENT ANGULAR-DISTRIBUTION NEUTRON TH-232 U-235 C6D6 COLLABORATION PHYSICS DESIGN.NEUTRONTH-232C6D6
researchProduct

Studies of astrophysically interesting nucleus23Al

2010

We have studied the β-delayed proton decay of 23Al with a novel detector setup at the focal plane of the MARS separator at the Texas A&M University to resolve existing controversies about the proton branching of the IAS in 23Mg and to determine the absolute proton branchings by combining our results to the latest βγ-decay data. We have made also a high precision mass measurement of the ground state of 23Al to establish more accurate proton separation energy of 23Al. Here the description of the used techniques along with preliminary results of the experiments are given.

PhysicsHistoryProton decayDetectorMars Exploration ProgramMass measurementComputer Science ApplicationsEducationNuclear physicsCardinal pointmedicine.anatomical_structuremedicineHigh Energy Physics::ExperimentGround stateNucleusJournal of Physics: Conference Series
researchProduct

β-decay and β-delayed Neutron Emission Measurements at GSI-FRS Beyond N=126, for r-process Nucleosynthesis

2014

New measurements of very exotic nuclei in the neutron-rich region beyond N=126 have been performed at the GSI facility with the fragment separator (FRS). The aim of the experiment is to determine half-lives and β-delayed neutron emission branching ratios of isotopes of Hg, Tl and Pb in this region. This contribution summarizes final counting statistics for identification and for implantation, as well as the present status of the data analysis of the half-lives. In summary, isotopes of Pt, Au, Hg, Tl, Pb, Bi, Po, At, Rn and Fr were clearly identified and several of them (208-211Hg, 211-215Tl, 214-218Pb) were implanted with enough statistics to determine their half-lives. About half of them a…

PhysicsNuclear and High Energy PhysicsIsotope010308 nuclear & particles physicsNeutron emissionBranching fraction01 natural sciencesNuclear physicsNucleosynthesis0103 physical sciencesr-processNeutron010306 general physicss-processDelayed neutronNuclear Data Sheets
researchProduct

Single-particle shell strengths near the doubly magic nucleus 56Ni and the 56Ni(p,γ)57Cu reaction rate in explosive astrophysical burning

2019

Angle-integrated cross-section measurements of the $^{56}$Ni(d,n) and (d,p) stripping reactions have been performed to determine the single-particle strengths of low-lying excited states in the mirror nuclei pair $^{57}$Cu-$^{57}$Ni situated adjacent to the doubly magic nucleus $^{56}$Ni. The reactions were studied in inverse kinematics utilizing a beam of radioactive $^{56}$Ni ions in conjunction with the GRETINA $\gamma$-array. Spectroscopic factors are compared with new shell-model calculations using a full $pf$ model space with the GPFX1A Hamiltonian for the isospin-conserving strong interaction plus Coulomb and charge-dependent Hamiltonians. These results were used to set new constrain…

Nuclear and High Energy Physicsastro-ph.SRNuclear TheoryExplosive materialnucl-thStrong interactionnucl-ex01 natural sciencesIonReaction ratesymbols.namesake0103 physical sciencesCoulombMirror nuclei010306 general physicsNuclear ExperimentNuclear ExperimentPhysicsradioactive beams010308 nuclear & particles physicsshell modellcsh:QC1-999Astrophysics - Solar and Stellar AstrophysicsExcited statesymbolsX-ray burststransfer reactionsAtomic physicsHamiltonian (quantum mechanics)ydinfysiikkalcsh:PhysicsPhysics Letters B
researchProduct