0000000000003176

AUTHOR

Katharina Birkner

showing 10 related works from this author

The Role of ERK Signaling in Experimental Autoimmune Encephalomyelitis

2017

Extracellular signal-regulated kinase (ERK) signaling plays a crucial role in regulating immune cell function and has been implicated in autoimmune disorders. To date, all commercially available inhibitors of ERK target upstream components, such as mitogen-activated protein (MAP) kinase/ERK kinase (MEKs), but not ERK itself. Here, we directly inhibit nuclear ERK translocation by a novel pharmacological approach (Glu-Pro-Glu (EPE) peptide), leading to an increase in cytosolic ERK phosphorylation during T helper (Th)17 cell differentiation. This was accompanied by diminished secretion of granulocyte-macrophage colony-stimulating factor (GM-CSF), a cytokine influencing the encephalitogenicity …

0301 basic medicineMAPK/ERK pathwaymedicine.medical_treatmentCellular differentiationexperimental autoimmune encephalomyelitisLymphocyte Activationmedicine.disease_causemultiple sclerosisAutoimmunitylcsh:ChemistryMice0302 clinical medicineT-Lymphocyte SubsetsPhosphorylationExtracellular Signal-Regulated MAP Kinaseslcsh:QH301-705.5SpectroscopyKinaseExperimental autoimmune encephalomyelitisInterleukinGeneral MedicineComputer Science ApplicationsCell biologyProtein TransportCytokine030220 oncology & carcinogenesisFemaleERK pathwayCell signalingEncephalomyelitis Autoimmune ExperimentalMAP Kinase Signaling SystemT cellsBiologyModels BiologicalArticleCatalysisInorganic Chemistry03 medical and health sciencesmedicineAnimalscell signalingPhysical and Theoretical ChemistryEPE peptideMolecular BiologyT cells; ERK pathway; EPE peptide; experimental autoimmune encephalomyelitis; multiple sclerosis; cell signalingOrganic ChemistryGranulocyte-Macrophage Colony-Stimulating Factormedicine.diseaseDisease Models Animal030104 developmental biologylcsh:Biology (General)lcsh:QD1-999Th17 CellsInternational Journal of Molecular Sciences
researchProduct

Fast direct neuronal signaling via the IL-4 receptor as therapeutic target in neuroinflammation.

2018

Ongoing axonal degeneration is thought to underlie disability in chronic neuroinflammation, such as multiple sclerosis (MS), especially during its progressive phase. Upon inflammatory attack, axons undergo pathological swelling, which can be reversible. Because we had evidence for beneficial effects of T helper 2 lymphocytes in experimental neurotrauma and discovered interleukin-4 receptor (IL-4R) expressed on axons in MS lesions, we aimed at unraveling the effects of IL-4 on neuroinflammatory axon injury. We demonstrate that intrathecal IL-4 treatment during the chronic phase of several experimental autoimmune encephalomyelitis models reversed disease progression without affecting inflamma…

0301 basic medicineMaleEncephalomyelitis Autoimmune ExperimentalMultiple SclerosisEncephalomyelitisInflammation03 medical and health sciencesMice0302 clinical medicinemedicineAnimalsHumansAxonReceptorNeuroinflammationAdministration IntranasalInflammationNeuronsbusiness.industryMultiple sclerosisExperimental autoimmune encephalomyelitisTranslation (biology)General Medicinemedicine.diseaseAxonsReceptors Interleukin-4030104 developmental biologymedicine.anatomical_structurenervous systemInterleukin-4medicine.symptombusinessNeuroscience030217 neurology & neurosurgeryLocomotionScience translational medicine
researchProduct

Targeting Voltage-Dependent Calcium Channels with Pregabalin Exerts a Direct Neuroprotective Effect in an Animal Model of Multiple Sclerosis

2018

Background/aims Multiple sclerosis (MS) is a prototypical autoimmune central nervous system (CNS) disease. Particularly progressive forms of MS (PMS) show significant neuroaxonal damage as consequence of demyelination and neuronal hyperexcitation. Immuno-modulatory treatment strategies are beneficial in relapsing MS (RMS), but mostly fail in PMS. Pregabalin (Lyrica®) is prescribed to MS patients to treat neuropathic pain. Mechanistically, it targets voltage-dependent Ca2+ channels and reduces harmful neuronal hyperexcitation in mouse epilepsy models. Studies suggest that GABA analogues like pregabalin exert neuroprotective effects in animal models of ischemia and trauma. Methods We tested t…

0301 basic medicineCentral nervous systemPregabalinPregabalinPharmacologyNeuroprotectionlcsh:RC346-429Multiple sclerosis03 medical and health sciencesCellular and Molecular NeuroscienceDevelopmental Neurosciencemedicinelcsh:Neurology. Diseases of the nervous systemExperimental autoimmune encephalomyelitisMicrogliaVoltage-dependent calcium channelbusiness.industryMultiple sclerosislcsh:QP351-495Experimental autoimmune encephalomyelitismedicine.diseaseNeuroprotectionlcsh:Neurophysiology and neuropsychology030104 developmental biologymedicine.anatomical_structureNeurologyNeuropathic painbusinessmedicine.drugNeurosignals
researchProduct

How repair-or-dispose decisions under stress can initiate disease progression

2020

Summary Glia, the helper cells of the brain, are essential in maintaining neural resilience across time and varying challenges: By reacting to changes in neuronal health glia carefully balance repair or disposal of injured neurons. Malfunction of these interactions is implicated in many neurodegenerative diseases. We present a reductionist model that mimics repair-or-dispose decisions to generate a hypothesis for the cause of disease onset. The model assumes four tissue states: healthy and challenged tissue, primed tissue at risk of acute damage propagation, and chronic neurodegeneration. We discuss analogies to progression stages observed in the most common neurodegenerative conditions and…

0301 basic medicineCell signalingDisease onsetBioinformaticsSystems biology02 engineering and technologyArticle03 medical and health sciencesMathematical BiosciencesTissue damageMedicineddc:610Systems NeuroscienceResilience (network)lcsh:ScienceSystems neuroscienceMultidisciplinarybusiness.industrySystems BiologyNeurodegenerationDisease progression021001 nanoscience & nanotechnologymedicine.diseaseCrosstalk (biology)030104 developmental biologylcsh:Q0210 nano-technologybusinessNeuroscienceNeuroscience
researchProduct

Protein kinase CK2 governs the molecular decision between encephalitogenic T H 17 cell and T reg cell development

2016

T helper 17 (TH17) cells represent a discrete TH cell subset instrumental in the immune response to extracellular bacteria and fungi. However, TH17 cells are considered to be detrimentally involved in autoimmune diseases like multiple sclerosis (MS). In contrast to TH17 cells, regulatory T (Treg) cells were shown to be pivotal in the maintenance of peripheral tolerance. Thus, the balance between Treg cells and TH17 cells determines the severity of a TH17 cell-driven disease and therefore is a promising target for treating autoimmune diseases. However, the molecular mechanisms controlling this balance are still unclear. Here, we report that pharmacological inhibition as well as genetic ablat…

STAT3 Transcription Factor0301 basic medicineEncephalomyelitis Autoimmune ExperimentalMultiple SclerosisCellMice Transgenicchemical and pharmacologic phenomenaBiologySeverity of Illness IndexT-Lymphocytes RegulatoryMice03 medical and health sciences0302 clinical medicineImmune systemmedicineAnimalsHumansIL-2 receptorPhosphorylationCasein Kinase IISTAT3MultidisciplinaryCell growthInterleukin-17Experimental autoimmune encephalomyelitisGranulocyte-Macrophage Colony-Stimulating FactorFOXP3Peripheral toleranceForkhead Transcription Factorshemic and immune systemsReceptors Interleukinmedicine.diseasePeptide FragmentsMice Inbred C57BL030104 developmental biologymedicine.anatomical_structureGene Expression RegulationImmunologybiology.proteinCancer researchTh17 CellsMyelin-Oligodendrocyte GlycoproteinSignal Transduction030215 immunologyProceedings of the National Academy of Sciences
researchProduct

Anaplasma phagocytophilum Induces TLR- and MyD88-Dependent Signaling in In Vitro Generated Murine Neutrophils

2021

Anaplasma phagocytophilum is a tick-transmitted obligate intracellular Gram-negative bacterium that replicates in neutrophils. It elicits febrile disease in humans and in animals. In a mouse model, elimination of A. phagocytophilum required CD4+ T cells, but was independent of IFN-γ and other classical antibacterial effector mechanisms. Further, mice deficient for immune recognition and signaling via Toll-like receptor (TLR) 2, TLR4 or MyD88 were unimpaired in pathogen control. In contrast, animals lacking adaptor molecules of Nod-like receptors (NLR) such as RIP2 or ASC showed delayed clearance of A. phagocytophilum. In the present study, we investigated the contribution of further pattern…

0301 basic medicineMicrobiology (medical)ChemokineCLRanimal diseasesImmunologylcsh:QR1-502Microbiologylcsh:MicrobiologyNLR03 medical and health sciencesCellular and Infection Microbiology0302 clinical medicineImmune systemTLRparasitic diseasesNOD1cytokineddc:610ReceptorOriginal ResearchbiologychemokinefungiPattern recognition receptorSignal transducing adaptor proteinMyD88bacterial infections and mycosesbiology.organism_classificationAnaplasma phagocytophilumCell biologyiNOS030104 developmental biologyInfectious DiseasesTLR4biology.proteinbacteriaAnaplasma phagocytophilum030215 immunologyFrontiers in Cellular and Infection Microbiology
researchProduct

β1-Integrin– and K(V)1.3 channel–dependent signaling stimulates glutamate release from Th17 cells

2020

Although the impact of Th17 cells on autoimmunity is undisputable, their pathogenic effector mechanism is still enigmatic. We discovered soluble N-ethylmaleimide–sensitive factor attachment receptor (SNARE) complex proteins in Th17 cells that enable a vesicular glutamate release pathway that induces local intracytoplasmic calcium release and subsequent damage in neurons. This pathway is glutamine dependent and triggered by binding of β1-integrin to vascular cell adhesion molecule 1 (VCAM-1) on neurons in the inflammatory context. Glutamate secretion could be blocked by inhibiting either glutaminase or K(V)1.3 channels, which are known to be linked to integrin expression and highly expressed…

0301 basic medicineMultiple SclerosisGlutamic AcidVascular Cell Adhesion Molecule-1Cell Communication03 medical and health sciencesMice0302 clinical medicineAnimalsHumansChannel blockerReceptorNeuroinflammationMice KnockoutKv1.3 Potassium ChannelGlutamate secretionChemistryGlutaminaseCell adhesion moleculeIntegrin beta1Glutamate receptorGeneral MedicineCell biologyGlutamine030104 developmental biology030220 oncology & carcinogenesisTh17 CellsSNARE ProteinsResearch ArticleSignal Transduction
researchProduct

Inhibiting ERK nuclear translocation in Th17 cells leads to downregulation of GM-CSF

2014

MAPK/ERK pathwayNeurologyDownregulation and upregulationImmunologyImmunology and AllergyNeurology (clinical)Nuclear translocationCell biologyJournal of Neuroimmunology
researchProduct

CNS-localized myeloid cells capture living invading T cells during neuroinflammation

2020

Using an in vivo real-time approach, the authors show that local myeloid cells remove early CNS-invading T cells via an engulfment pathway that is dependent on N-acetyl-D-glucosamine (GlcNAc) and lectin. These results reveal a novel capacity of myeloid cells to counteract neuroinflammation.

0301 basic medicineCentral Nervous SystemProgrammed cell deathCell signalingEncephalomyelitis Autoimmune ExperimentalCell SurvivalEncephalomyelitisT cellT-LymphocytesImmunologyInnate Immunity and InflammationCX3C Chemokine Receptor 1AutoimmunityReceptors Cell SurfaceCell CommunicationPhosphatidylserinesBiologyLymphocyte ActivationSeverity of Illness IndexArticle03 medical and health sciencesMice0302 clinical medicineNeuroinflammationPhagocytosisIn vivomedicineImmunology and AllergyAnimalsLectins C-TypeMyeloid CellsNeuroinflammationInflammationGlucosamineCell DeathExperimental autoimmune encephalomyelitismedicine.diseaseCell biology030104 developmental biologymedicine.anatomical_structureMannose-Binding LectinsTh17 Cells030217 neurology & neurosurgeryEx vivoMannose ReceptorThe Journal of Experimental Medicine
researchProduct

Casein kinase 2 governs the molecular decision between Th17 cell and Treg cell development and controls encephalitogenicity of Th17 cells in experime…

2014

medicine.anatomical_structureNeurologyImmunologyExperimental autoimmune encephalomyelitisCellmedicineImmunology and AllergyNeurology (clinical)BiologyCasein kinase 2medicine.diseaseTreg cellCell biologyJournal of Neuroimmunology
researchProduct