6533b7d7fe1ef96bd126843e
RESEARCH PRODUCT
Fast direct neuronal signaling via the IL-4 receptor as therapeutic target in neuroinflammation.
Jérôme BirkenstockJonathan KipnisJonathan KipnisRobert NitschShibajee MandalAndrea SchnatzCedric S. RaineStefan BittnerFrauke ZippSteffen LerchKatharina BirknerUlrike BühlerJohannes VogtChristina F. Vogelaarsubject
0301 basic medicineMaleEncephalomyelitis Autoimmune ExperimentalMultiple SclerosisEncephalomyelitisInflammation03 medical and health sciencesMice0302 clinical medicinemedicineAnimalsHumansAxonReceptorNeuroinflammationAdministration IntranasalInflammationNeuronsbusiness.industryMultiple sclerosisExperimental autoimmune encephalomyelitisTranslation (biology)General Medicinemedicine.diseaseAxonsReceptors Interleukin-4030104 developmental biologymedicine.anatomical_structurenervous systemInterleukin-4medicine.symptombusinessNeuroscience030217 neurology & neurosurgeryLocomotiondescription
Ongoing axonal degeneration is thought to underlie disability in chronic neuroinflammation, such as multiple sclerosis (MS), especially during its progressive phase. Upon inflammatory attack, axons undergo pathological swelling, which can be reversible. Because we had evidence for beneficial effects of T helper 2 lymphocytes in experimental neurotrauma and discovered interleukin-4 receptor (IL-4R) expressed on axons in MS lesions, we aimed at unraveling the effects of IL-4 on neuroinflammatory axon injury. We demonstrate that intrathecal IL-4 treatment during the chronic phase of several experimental autoimmune encephalomyelitis models reversed disease progression without affecting inflammation. Amelioration of disability was abrogated upon neuronal deletion of IL-4R. We discovered direct neuronal signaling via the IRS1-PI3K-PKC pathway underlying cytoskeletal remodeling and axonal repair. Nasal IL-4 application, suitable for clinical translation, was equally effective in improving clinical outcome. Targeting neuronal IL-4 signaling may offer new therapeutic strategies to halt disability progression in MS and possibly also neurodegenerative conditions.
year | journal | country | edition | language |
---|---|---|---|---|
2018-02-28 | Science translational medicine |