0000000000019042
AUTHOR
Jonathan Kipnis
Fast direct neuronal signaling via the IL-4 receptor as therapeutic target in neuroinflammation.
Ongoing axonal degeneration is thought to underlie disability in chronic neuroinflammation, such as multiple sclerosis (MS), especially during its progressive phase. Upon inflammatory attack, axons undergo pathological swelling, which can be reversible. Because we had evidence for beneficial effects of T helper 2 lymphocytes in experimental neurotrauma and discovered interleukin-4 receptor (IL-4R) expressed on axons in MS lesions, we aimed at unraveling the effects of IL-4 on neuroinflammatory axon injury. We demonstrate that intrathecal IL-4 treatment during the chronic phase of several experimental autoimmune encephalomyelitis models reversed disease progression without affecting inflamma…
Myeloid Cells in the Central Nervous System
The central nervous system (CNS) and its meningeal coverings accommodate a diverse myeloid compartment that includes parenchymal microglia and perivascular macrophages, as well as choroid plexus and meningeal macrophages, dendritic cells, and granulocytes. These myeloid populations enjoy an intimate relationship with the CNS, where they play an essential role in both health and disease. Although the importance of these cells is clearly recognized, their exact function in the CNS continues to be explored. Here, we review the subsets of myeloid cells that inhabit the parenchyma, meninges, and choroid plexus and discuss their roles in CNS homeostasis. We also discuss the role of these cells in…
Understanding the Role of T Cells in CNS Homeostasis.
T cells within the central nervous system (CNS) have been generally considered pathogenic, especially in the context of neuroinflammatory disease. However, recent findings have revealed varied functions for T cells in the healthy CNS, as well as more complex roles for these cells in infection and injury than previously appreciated. Here we review evidence indicating important roles for different T cell subsets in the maintenance of CNS homeostasis. We examine the contribution of T cells in limiting inflammation and damage upon CNS injury, infection, and in neurodegeneration, and discuss the current understanding of the cellular and molecular mechanisms involved. Insight into these processes…
Skull and vertebral bone marrow are myeloid cell reservoirs for the meninges and CNS parenchyma.
Getting around the blood–brain barrier The meninges comprise three membranes that surround and protect the central nervous system (CNS). Recent studies have noted the existence of myeloid cells resident there, but little is known about their ontogeny and function, and whether other meningeal immune cell populations have important roles remains unclear (see the Perspective by Nguyen and Kubes). Cugurra et al. found in mice that a large proportion of continuously replenished myeloid cells in the dura mater are not blood derived, but rather transit from cranial bone marrow through specialized channels. In models of CNS injury and neuroinflammation, the authors demonstrated that these myeloid c…
Functional characterization of the dural sinuses as a neuroimmune interface
Summary Despite the established dogma of central nervous system (CNS) immune privilege, neuroimmune interactions play an active role in diverse neurological disorders. However, the precise mechanisms underlying CNS immune surveillance remain elusive; particularly, the anatomical sites where peripheral adaptive immunity can sample CNS-derived antigens and the cellular and molecular mediators orchestrating this surveillance. Here, we demonstrate that CNS-derived antigens in the cerebrospinal fluid (CSF) accumulate around the dural sinuses, are captured by local antigen-presenting cells, and are presented to patrolling T cells. This surveillance is enabled by endothelial and mural cells formin…
MHCII-independent CD4+ T cells protect injured CNS neurons via IL-4
A body of experimental evidence suggests that T cells mediate neuroprotection following CNS injury; however, the antigen specificity of these T cells and how they mediate neuroprotection are unknown. Here, we have provided evidence that T cell-mediated neuroprotection after CNS injury can occur independently of major histocompatibility class II (MHCII) signaling to T cell receptors (TCRs). Using two murine models of CNS injury, we determined that damage-associated molecular mediators that originate from injured CNS tissue induce a population of neuroprotective, IL-4-producing T cells in an antigen-independent fashion. Compared with wild-type mice, IL-4-deficient animals had decreased functi…