0000000000003291

AUTHOR

Mohammed Bakiri

0000-0001-5402-986x

showing 2 related works from this author

A Hardware and Secure Pseudorandom Generator for Constrained Devices

2018

Hardware security for an Internet of Things or cyber physical system drives the need for ubiquitous cryptography to different sensing infrastructures in these fields. In particular, generating strong cryptographic keys on such resource-constrained device depends on a lightweight and cryptographically secure random number generator. In this research work, we have introduced a new hardware chaos-based pseudorandom number generator, which is mainly based on the deletion of an Hamilton cycle within the $N$ -cube (or on the vectorial negation), plus one single permutation. We have rigorously proven the chaotic behavior and cryptographically secure property of the whole proposal: the mid-term eff…

Applied cryptography; Chaotic circuits; Constrained devices; Discrete dynamical systems; FPGA; Lightweight Cryptography; Random number generators; Statistical tests; Control and Systems Engineering; Information Systems; Computer Science Applications1707 Computer Vision and Pattern Recognition; Electrical and Electronic EngineeringHardware security moduleComputer scienceRandom number generationCryptography[INFO.INFO-SE]Computer Science [cs]/Software Engineering [cs.SE]02 engineering and technologyPseudorandom generatorConstrained devicesLightweight CryptographyChaotic circuits[INFO.INFO-IU]Computer Science [cs]/Ubiquitous Computing[INFO.INFO-CR]Computer Science [cs]/Cryptography and Security [cs.CR]PermutationRandom number generatorsStatistical tests0202 electrical engineering electronic engineering information engineeringElectrical and Electronic EngineeringField-programmable gate arrayThroughput (business)FPGAPseudorandom number generatorGenerator (category theory)business.industry020208 electrical & electronic engineeringComputer Science Applications1707 Computer Vision and Pattern Recognition020206 networking & telecommunicationsDiscrete dynamical systems[INFO.INFO-MO]Computer Science [cs]/Modeling and SimulationComputer Science ApplicationsApplied cryptography[INFO.INFO-MA]Computer Science [cs]/Multiagent Systems [cs.MA]Control and Systems EngineeringKey (cryptography)[INFO.INFO-ET]Computer Science [cs]/Emerging Technologies [cs.ET][INFO.INFO-DC]Computer Science [cs]/Distributed Parallel and Cluster Computing [cs.DC]businessComputer hardwareInformation SystemsIEEE Transactions on Industrial Informatics
researchProduct

CIPRNG: A VLSI Family of Chaotic Iterations Post-Processings for $\mathbb {F}_{2}$ -Linear Pseudorandom Number Generation Based on Zynq MPSoC

2018

Hardware pseudorandom number generators are continuously improved to satisfy both physical and ubiquitous computing security system challenges. The main contribution of this paper is to propose two post-processing modules in hardware, to improve the randomness of linear PRNGs while succeeding in passing the TestU01 statistical battery of tests. They are based on chaotic iterations and are denoted by CIPRNG-MC and CIPRNG-XOR. They have various interesting properties, encompassing the ability to improve the statistical profile of the generators on which they iterate. Such post-processing have been implemented on FPGA and ASIC without inferring any blocs (RAM or DSP). A comparison in terms of …

Very-large-scale integrationPseudorandom number generator020208 electrical & electronic engineeringChaotic02 engineering and technologyParallel computingMPSoCTestU01020202 computer hardware & architectureApplication-specific integrated circuit0202 electrical engineering electronic engineering information engineeringElectrical and Electronic EngineeringField-programmable gate arrayThroughput (business)MathematicsIEEE Transactions on Circuits and Systems I: Regular Papers
researchProduct