0000000000004232

AUTHOR

Wan Ki Bae

The Role of Emission Layer Morphology on the Enhanced Performance of Light-Emitting Diodes Based on Quantum Dot-Semiconducting Polymer Hybrids

The influence of the morphology of quantum dot (QD)-semiconducting polymer hybrid emission layers on the performance of quantum dot-based light emitting diodes (QLEDs) is systematically investigated. Chemically grafted QD-semiconducting polymer hybrids are fabricated by the ligand exchange procedure between CdSe/CdxZn1−xS QDs and a new block copolymer consisting of a carbazole-based electroactive block with a low highest occupied molecular orbital level and a disulfide-based anchor block. The performance of QLEDs with hybrid emission layers is compared with QLEDs utilizing QD-only and physically mixed QD/polymer emission layers. It is shown that only in the emission layers formed by chemica…

research product

Quantum dot-block copolymer hybrids with improved properties and their application to quantum dot light-emitting devices.

To combine the optical properties of CdSe@ZnS quantum dots (QDs) with the electrical properties of semiconducting polymers, we prepared QD/polymer hybrids by grafting a block copolymer (BCP) containing thiol-anchoring moieties (poly(para-methyl triphenylamine-b-cysteamine acrylamide)) onto the surfaces of QDs through the ligand exchange procedure. The prepared QD/polymer hybrids possess improved processability such as enhanced solubility in various organic solvents as well as the film formation properties along with the improved colloidal stability derived from the grafted polymer shells. We also demonstrated light-emitting diodes based on QD/polymer hybrids, exhibiting the improved device …

research product

The effect of band gap alignment on the hole transport from semiconducting block copolymers to quantum dots

Semiconducting hole transporting block copolymers were chemically modified to adjust their energy levels to that of CdSe/CdS/CdZnS red quantum dots. Hybrids with optimized energy levels could be used to build strongly improved quantum dot based LEDs (QLEDs).

research product

Characterization of quantum dot/conducting polymer hybrid films and their application to light-emitting diodes.

Quantum dot/conducting polymer hybrid films are used to prepare light-emitting diodes (LEDs). The hybrid films (CdSe@ZnS quantum dots excellently dispersed in a conducting polymer matrix, see figure) are readily prepared by various solution-based processes and are also easily micropatterned. The LEDs exhibit a turn-on voltage of 4 V, an external quantum efficiency greater than 1.5%, and almost pure-green quantum-dot electroluminescence.

research product

Multidentate Polysarcosine-Based Ligands for Water-Soluble Quantum Dots

We describe the synthesis of heterotelechelic polysarcosine polymers and their use as multidentate ligands in the preparation of stable water-soluble quantum dots (QDs). Orthogonally functionalized polysarcosine with amine and dibenzocyclooctyl (DBCO) end groups is obtained by ring-opening polymerization of N-methylglycine N-carboxyanhydride with DBCO amine as initiator. In a first postpolymerization modification step, the future biological activity of the polymeric ligands is adjusted by modification of the amine terminus. Then, in a second postpolymerization modification step, azide functionalized di- and tridentate anchor compounds are introduced to the DBCO terminus of the polysarcosine…

research product

Controlled Synthesis of CdSe Tetrapods with High Morphological Uniformity by the Persistent Kinetic Growth and the Halide-Mediated Phase Transformation

We report scalable controlled synthesis of CdSe tetrapods with high morphological uniformity based on the continuous precursor injection (CPI) approach with halide ligands. The CPI approach involves the successive injection of precursors into the seed solution at a controlled rate so that the reaction condition remains in the kinetic growth regime. To initiate the successful development of tetrapod structure, the controlled amount of halide ligands are added during the reaction, which triggered the formation of wurtzite arms on {111}-facets of the zincblende seeds. The formation of the wurtzite phase is responsible for the halide-mediated displacement of oleate ligands, destabilizing the em…

research product

Origin of enhanced efficiency and stability in diblock copolymer-grafted Cd-free quantum dot-based light-emitting diodes

The efficiency and operational lifetime of quantum dot (QD) based light-emitting diodes (QLEDs) are essentially affected by the electron–hole charge balance. Although various methods have been reported to improve the charge balance, these methods cause issues at the same time, such as increasing a driving voltage and complicating a device structure. In this work, we introduce hybrid InP/ZnSeS/ZnS QDs, in which the oleic acid ligands are substituted with semiconducting diblock copolymer units possessing hole-transporting carbazole groups, to facilitate hole injection and to reduce electron leakage. As a result, the efficiency and the operational lifetime were improved by 1.4-fold and 4-fold,…

research product

Side-chain conjugated polymers for use in the active layers of hybrid semiconducting polymer/quantum dot light emitting diodes

Three monomers, M1–M3, with modified carbazole cores and styrene functionality were prepared for use in the active layers of hybrid polymer/quantum dot light emitting diodes. Utilizing reversible addition fragmentation chain transfer polymerization, side-chain conjugated polymers, P1–P3, with narrow polydispersities and disulfide end groups were obtained. The thermal, optical, and electrochemical properties of the polymers varied depending on the substituents of the carbazole cores. Through the disulfide end groups the polymers were chemically blended with quantum dots to obtain QD/polymer hybrids, which were further used as active layers in light emitting diodes. The fabricated devices ret…

research product

Reduced efficiency roll-off in light-emitting diodes enabled by quantum dot–conducting polymer nanohybrids

We demonstrate QLEDs implementing wider active layers (50 nm) based on QD–conducting polymer nanohybrids, which exhibit a stable operational device performance across a wide range of current densities and brightness. A comparative study reveals that the significant suppression of efficiency roll-off in the high current density regime is primarily attributed to a sufficient charge carrier distribution over the wider active layer and improved charge carrier balance within QDs enabled by the hybridization of QDs with conducting polymers. Utilization of this finding in future studies should greatly facilitate the development of high performance, stable QLEDs at high current density or luminance…

research product