0000000000004492
AUTHOR
Christopher Geppert
Impact of Ir modification on the durability of FeNC catalysts under start-up and shutdown cycle conditions
A common problem associated with FeNC catalysts is their poor stability dominated by the carbon oxidation reaction (COR). In this work, the feasibility of stabilizing FeNC catalysts with small quantities of Ir was explored. With iridium being present, instead of COR the oxygen evolution reaction should be favored. The impact on structure and morphology was investigated by 57Fe Mössbauer spectroscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and transmission electron microscopy. The catalytic activity and durability for the oxygen reduction reaction was evaluated by rotating ring disc electrode experiments and accelerated stress tests mimicking the start-up and shutdown cycle (SS…
A new Collinear Apparatus for Laser Spectroscopy and Applied Science (COALA).
We present a new collinear laser spectroscopy setup that has been designed to overcome systematic uncertainty limits arising from high-voltage and frequency measurements, beam superposition, and collisions with residual gas that are present in other installations utilizing this technique. The applied methods and experimental realizations are described, including an active stabilization of the ion-source potential, new types of ion sources that have not been used for collinear laser spectroscopy so far, dedicated installations for pump-and-probe measurements, and a versatile laser system referenced to a frequency comb. The advanced setup enables us to routinely determine transition frequenci…
The research reactor TRIGA Mainz – a strong and versatile neutron source for science and education
Abstract The TRIGA Mark II-reactor at the Johannes Gutenberg University Mainz (JGU) is one of three research reactors in Germany. The TRIGA Mainz became first critical on August 3rd, 1965. It can be operated in the steady state mode with a maximum power of 100 kWth and in the pulse mode with a peak power of 250 MWth and a pulse length of 30 ms. The TRIGA Mainz is equipped with a central thimble, a rotary specimen rack, three pneumatic transfer systems, four beam tubes, and a graphite thermal column. The TRIGA Mainz is intensively used both for basic and applied research in nuclear chemistry and nuclear physics. Two sources for ultra-cold neutrons (UCN) are operational at two beam ports. At …
Test of Time Dilation Using StoredLi+Ions as Clocks at Relativistic Speed
We present the concluding result from an Ives-Stilwell-type time dilation experiment using 7Li+ ions confined at a velocity of β=v/c=0.338 in the storage ring ESR at Darmstadt. A Λ-type three-level system within the hyperfine structure of the 7Li+3S1 →3P2 line is driven by two laser beams aligned parallel and antiparallel relative to the ion beam. The lasers' Doppler shifted frequencies required for resonance are measured with an accuracy of <4×10(-9) using optical-optical double resonance spectroscopy. This allows us to verify the special relativity relation between the time dilation factor γ and the velocity β, γ√1-β2=1 to within ±2.3×10(-9) at this velocity. The result, which is singled …
High Voltage Metrology with Collinear Laser Spectroscopy
We present results of laser spectroscopic high voltage measurements on the 5 ppm relative uncertainty level using a pump and probe scheme on Ca+ ions. With the two-stage laser interaction and with a reference measurement we can eliminate systematic effects like differences in contact potentials of electrode materials, thermo-electric voltages, and the unknown starting potential of the ions in the ion source. Our measurements are compatible with the 5 ppm precision limits of the high voltage dividers used for comparison and demonstrate an unprecedented increase in the accuracy of laser-based high voltage measurements by a factor of 20.
Lifetimes and g-factors of the HFS states in H-like and Li-like bismuth
The LIBELLE experiment performed at the experimental storage ring (ESR) at the GSI Helmholtz Center for Heavy Ion Research in Darmstadt, Germany, has successfully determined the ground state hyperfine (HFS) splittings in hydrogen-like ($^{209}\rm{Bi}^{82+}$) and lithium-like ($^{209}\rm{Bi}^{80+}$) bismuth. The study of HFS transitions in highly charged ions enables precision tests of QED in extreme electric and magnetic fields otherwise not attainable in laboratory experiments. Besides the transition wavelengths the time resolved detection of fluorescence photons following the excitation of the ions by a pulsed laser system also allows to extract lifetimes of the upper HFS levels and g-fac…
Test of Time Dilation Using Stored Li+ Ions as Clocks at Relativistic Speed
We present the concluding result from an Ives-Stilwell-type time dilation experiment using 7Li+ ions confined at a velocity of β=v/c=0.338 in the storage ring ESR at Darmstadt. A Λ-type three-level system within the hyperfine structure of the 7Li+3S1 → 3P2 line is driven by two laser beams aligned parallel and antiparallel relative to the ion beam. The lasers’ Doppler shifted frequencies required for resonance are measured with an accuracy of 2=1 to within ±2.3×10−9 at this velocity. The result, which is singled out by a high boost velocity β, is also interpreted within Lorentz invariance violating test theories.
New Nuclear Magnetic Moment of Bi209 : Resolving the Bismuth Hyperfine Puzzle
A recent measurement of the hyperfine splitting in the ground state of Li-like ${^{208}\mathrm{Bi}}^{80+}$ has established a ``hyperfine puzzle''---the experimental result exhibits a $7\ensuremath{\sigma}$ deviation from the theoretical prediction [J. Ullmann et al., Nat. Commun. 8, 15484 (2017); J. P. Karr, Nat. Phys. 13, 533 (2017)]. We provide evidence that the discrepancy is caused by an inaccurate value of the tabulated nuclear magnetic moment (${\ensuremath{\mu}}_{I}$) of $^{209}\mathrm{Bi}$. We perform relativistic density functional theory and relativistic coupled cluster calculations of the shielding constant that should be used to extract the value of ${\ensuremath{\mu}}_{I}(^{209…
An ion cooler-buncher for high-sensitivity collinear laser spectroscopy at ISOLDE
International audience; A gas-filled segmented linear Paul trap has been installed at the focal plane of the high-resolution separator (HRS) at CERN-ISOLDE. As well as providing beams with a reduced transverse emittance, this device is also able to accumulate the ions and release the sample in bunches with a well-defined time structure. This has recently permitted collinear laser spectroscopy with stable and radioactive bunched beams to be demonstrated at ISOLDE. Surface-ionized 39, 44, 46K and 85Rb beams were accelerated to 30keV, mass separated and injected into the trap for subsequent extraction and delivery to the laser setup. The ions were neutralized in a charge exchange cell and exci…
Total angular momenta of even-parity autoionizing levels and odd-parity high-lying levels of atomic uranium
Using three-step resonance ionization spectroscopy, over 200 even-parity autoionizing (AI) levels of atomic uranium, including Rydberg series converging to the second lowest ionic level (6L 11/2o), were observed in the 49 930–51 200 cm−1 energy range. Total angular momenta (J values) of these levels were determined by a polarization combination method as well as a method based on the J-momentum selection rule. Using the AI levels of which J values were determined unambiguously, unique J values were also assigned for about 70 high-lying odd-parity levels. The observed J-dependence on autoionization linewidth is interpreted as being due to a centrifugal potential barrier.
The dynamics of bunched laser-cooled ion beams at relativistic energies
We discuss the axial dynamics of laser-cooled relativistic C3+ ion beams at moderate bunching voltages. Schottky noise spectra measured at a beam energy of 122 MeV/u are compared to simulations of the axial beam dynamics. Ions confined in the bucket are addressed by the narrow-band force of a laser beam counter-propagating to the ion beam, while the laser frequency is detuned relatively to the cooling transition frequency in the rest frame of the bucket. At large detuning comparable to the momentum acceptance of the bucket, the axial dynamics can be well explained by the secular motion of individual non-interacting ions. At small detuning, corresponding to a small axial momentum spread Δpax…
A novel scheme for a highly selective laser ion source
A new type of resonance ionization laser ion source, which shall combine the advantages of a laser ion source with those of an ion trap, is proposed. The primary purpose of such a laser ion source trap, which is based on a gas-filled linear radio-frequency quadrupole ion trap system, is the decoupling of evaporation and ionization processes. Furthermore optimum temporal control on the generated ion bunch is obtained. Both effects will lead to a significantly increased isobaric selectivity and ion beams of low emittance. A large variety of operational modes, ranging from quasi-dc to microseconds-bunched radioactive ion beams with variable pulse width and repetition rate, can be chosen freely…
Ground-state spins and moments of72,74,76,78Ga nuclei
Laser spectroscopy was performed on the ${}^{72,74,76,78}$Ga isotopes at On-Line Isotope Mass Separator (ISOLDE) facility, CERN. Ground-state nuclear spins and moments were extracted from the measured hyperfine spectra. The results are compared to shell-model calculations, which provide a detailed probe of the nuclear wave function. The spin is established from the shape of the hyperfine structure and the parity inferred from a comparison of shell-model calculations with the measured nuclear moments. The ground states of ${}^{76,78}$Ga are both assigned a spin and parity of ${I}^{\ensuremath{\pi}}={2}^{\ensuremath{-}}$, while ${}^{74}$Ga is tentatively assigned as ${I}^{\ensuremath{\pi}}={3…
Resonance Ionization Laser Ion Source - Off-line tests at TRIUMF
Resonance ionization laser ion sources (RILIS) developed into the most powerful tool for radioactive ion beam production at on-line facilities, as they provide a selective ionization process with inherent suppression of unwanted isobaric contaminations at the ion source. While typical tunable laser systems for these applications are based on dye lasers, we developed an all solid state laser system which consists of three pulsed titanium:sapphire (ti:sa) lasers pumped by a single high repetition rate Nd:YAG laser. Each ti:sa laser provides up to 2.5 W average output power at 12 kHz repetition rate in the wavelength region of 700-950 nm with optional frequency doubling in BBO crystals. This l…
TRIGA-SPEC: A setup for mass spectrometry and laser spectroscopy at the research reactor TRIGA Mainz
The research reactor TRIGA Mainz is an ideal facility to provide neutron-rich nuclides with production rates sufficiently large for mass spectrometric and laser spectroscopic studies. Within the TRIGA-SPEC project, a Penning trap as well as a beam line for collinear laser spectroscopy are being installed. Several new developments will ensure high sensitivity of the trap setup enabling mass measurements even on a single ion. Besides neutron-rich fission products produced in the reactor, also heavy nuclides such as 235-U or 252-Cf can be investigated for the first time with an off-line ion source. The data provided by the mass measurements will be of interest for astrophysical calculations on…
Optical measurement of the longitudinal ion distribution of bunched ion beams in the ESR
Abstract An optical technique to study the longitudinal distribution of ions in a bunched ion beam circulating in a storage ring is presented. It is based on the arrival-time analysis of photons emitted after collisional excitation of residual gas molecules. The beam-induced fluorescence was investigated in the ultraviolet regime with a channeltron and in the visible region using a photomultiplier tube. Both were applied to investigate the longitudinal shape of bunched and electron-cooled 209Bi80+ ion beams at about 400 MeV/u in the experimental storage ring (ESR) at GSI Helmholtzzentrum fur Schwerionenforschung in Darmstadt, Germany. Bunch lengths were determined with an uncertainty of abo…
TRIGA-SPEC: the prototype of MATS and LaSpec
Investigation of short-lived nuclei is a challenging task that MATS and LaSpec will handle at the low energy branch of Super-FRS at FAIR. The groundwork for those experiments is laid-out already today at the TRIGA-SPEC facility as a powerful development platform located at the research reactor TRIGA Mainz. The latest status, new developments and first results of commissioning runs are presented here.
First laser ions at an off-line mass separator of the ISAC facility at TRIUMF
For efficient and in particular for selective production of radioactive ion beams at on-line mass separator facilities the technique of resonance ionization laser ion sources (RILIS) has become the most powerful tool. In facilities like ISOLDE at CERN they nowadays represent the most commonly used type of ion source for rare short-lived isotopes, delivering highest suppression of isobaric contaminations. For a first off-line demonstration preparing the development and installation of such a laser ion source at the new ISAC facility at TRIUMF in Vancouver (Canada), an all solid state laser system developed at the University of Mainz (Germany), was transferred and tested there at an off-line …
Novel photoreception system in sponges?
Abstract Sponges (phylum Porifera) of the classes Hexactinellida and Demospongiae possess a skeleton composed of siliceous spicules, which are synthesized enzymatically. The longest spicules are found among the Hexactinellida, with the stalk spicules (length: 30 cm; diameter: 300 μm) of Hyalonema sieboldi as prominent examples. These spicules are constructed around a central axial filament, which is formed by approximately 40 siliceous layers. The stratified spicules function as optical glass fibers with unique properties. If free-spaced coupled with a white light source (WLS), the entire fiber is illuminated. Special features of the light transmission: (i) only wavelengths between 615 and …
Certification of a 41Ca dose material for use in human studies (IRMM-3703) and a corresponding set of isotope reference materials for 41Ca measurements (IRMM-3701)
Abstract The long-living radioisotope 41Ca could overcome current limitations in assessing the impact of interventions on bone health in controlled human studies. Changes in bone Ca metabolism can be identified directly via the induced changes in 41Ca excretion from 41Ca-labelled bones via the n(41Ca)/n(40Ca) ratio in urine. A 41Ca dose material (IRMM-3703), for use in human studies, was produced by IRMM within the EC funded project OSTEODIET. The 41Ca base material was purified and the purified solution is certified for both isotopic composition and amount content by isotope dilution mass spectrometry. The 44Ca-enriched isotope reference material, IM-6009, was used as spike and the natural…
Absolute frequency measurements on the 2S→3S transition of lithium-6,7
The frequencies of the 2S–3S two-photon transition for the stable lithium isotopes were measured by cavity-enhanced Doppler-free laser excitation that was controlled by a femtosecond frequency comb. The resulting values of 815 618 181.57(18) and 815 606 727.59(18) MHz, respectively, for 7Li and 6Li are in agreement with previous measurements but are more accurate by an order of magnitude. There is still a discrepancy of about 11.6 and 10.6 MHz from the latest theoretical values. This is comparable to the uncertainty in the theoretical calculations, while uncertainty in our experimental values is more than a hundred-fold smaller. More accurate theoretical calculation of the transition freque…
Observation of the hyperfine transition in lithium-like bismuthBi20980+: Towards a test of QED in strong magnetic fields
We performed a laser spectroscopic determination of the $2s$ hyperfine splitting (HFS) of Li-like ${}^{209}{\text{Bi}}^{80+}$ and repeated the measurement of the $1s$ HFS of H-like ${}^{209}{\text{Bi}}^{82+}$. Both ion species were subsequently stored in the Experimental Storage Ring at the GSI Helmholtzzentrum f\"ur Schwerionenforschung Darmstadt and cooled with an electron cooler at a velocity of $\ensuremath{\approx}0.71\phantom{\rule{0.16em}{0ex}}c$. Pulsed laser excitation of the $M1$ hyperfine transition was performed in anticollinear and collinear geometry for ${\text{Bi}}^{82+}$ and ${\text{Bi}}^{80+}$, respectively, and observed by fluorescence detection. We obtain $\ensuremath{\De…
Laser systems for on-line laser ion sources
Since its initiation in the middle of the 1980s, the resonant ionization laser ion source has been established as a reliable and efficient on-line ion source for radioactive ion beams. In comparison to other on-line ion sources it comprises the advantages of high versatility for the elements to be ionized and of high selectivity and purity for the ion beam generated by resonant laser radiation. Dye laser systems have been the predominant and pioneering working horses for laser ion source applications up to recently, but the development of all-solid-state titanium:sapphire laser systems has nowadays initiated a significant evolution within this field. In this paper an overview of the ongoing…
Laser spectroscopy measurement of the 2s-hyperfine splitting in lithium-like bismuth
We have recently reported on the first direct measurement of the $2s$ hyperfine transition in lithium-like bismuth (209Bi80+) at the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany. Combined with a new measurement of the $1s$ hyperfine splitting (HFS) in hydrogen-like (209Bi82+) the so-called specific difference ${\rm{\Delta }}^{\prime} E=-61.37(36)$ meV could be determined and was found to be in good agreement with its prediction from strong-field bound-state quantum electrodynamics. Here we report on additional investigations performed to estimate systematic uncertainties of these results and on details of the experimental setup. We show that the dominating uncertainty a…
The laser ion source and trap (LIST) – A highly selective ion source
A combined structure consisting of a laser ion source and a linear Paul trap (LIST) has been designed to produce radioactive ion beams of high purity and optimal temporal and spacial brilliance at on-line isotope separator (ISOL) facilities. The functionality of the LIST was experimentally demonstrated in off-line tests using the RISIKO off-line mass separator together with an all solid state Ti:sapphire laser system at the University of Mainz. Two different ion trap designs were tested extracting the performance of these devices regarding ionization efficiency and selectivity as well as time structure and transverse emittance of the produced ion beam. The results of these measurements are …
Magnetic and quadrupole moments of neutron deficient 58-62Cu isotopes
Abstract This paper reports on the ground state nuclear moments measured in 58–62Cu using collinear laser spectroscopy at the ISOLDE facility. The quadrupole moments for 58–60Cu have been measured for the first time as Q ( Cu 58 ) = − 15 ( 3 ) efm 2 , Q ( Cu 59 ) = − 19.3 ( 19 ) efm 2 , Q ( Cu 60 ) = + 11.6 ( 12 ) efm 2 and with higher precision for 61,62Cu as Q ( Cu 61 ) = − 21.1 ( 10 ) efm 2 , Q ( Cu 62 ) = − 2.2 ( 4 ) efm 2 . The magnetic moments of 58,59Cu are measured with a higher precision as μ ( Cu 58 ) = + 0.570 ( 2 ) μ N and μ ( Cu 59 ) = + 1.8910 ( 9 ) μ N . The experimental nuclear moments are compared to large-scale shell-model calculations with the GXPF1 and GXPF1A effective i…
First observation of the ground-state hyperfine transition in 209Bi80+
The long sought after ground-state hyperfine transition in lithium-like bismuth 209Bi80+ was observed for the first time using laser spectroscopy on relativistic ions in the experimental storage ring at the GSI Helmholtz Centre in Darmstadt. Combined with the transition in the corresponding hydrogen-like ion 209Bi82+, it will allow extraction of the specific difference between the two transitions that is unaffected by the magnetic moment distribution in the nucleus and can therefore provide a better test of bound-state QED in extremely strong magnetic fields.
SPARC experiments at the high-energy storage ring
The physics program of the SPARC collaboration at the Facility for Antiproton and Ion Research (FAIR) focuses on the study of collision phenomena in strong and even extreme electromagnetic fields and on the fundamental interactions between electrons and heavy nuclei up to bare uranium. Here we give a short overview on the challenging physics opportunities of the high-energy storage ring at FAIR for future experiments with heavy-ion beams at relativistic energies with particular emphasis on the basic beam properties to be expected.
Temporal Control of Pulses from a High-Repetition-Rate Tunable Ti:Sapphire Laser by Active Q-switching
We investigated the lasing characteristics of a Ti:sapphire laser pumped by a pulsed high-repetition-rate Nd:YAG laser. The pump laser has a pulsewidth of 450 ns, while the Ti:sapphire laser shows a significantly shorter pulse width of 25 ns for suitably intense pumping. The energy conversion efficiency of the laser is more than 10%. To synchronize different lasers and to avoid multiple spiking during one pump pulse, we use a Brewster-cut Pockels cell in the resonator for Q-switching. The temporal profile and conversion efficiency are determined and compared to theoretical estimates.
Comparison of ultracold neutron sources for fundamental physics measurements
Ultracold neutrons (UCNs) are key for precision studies of fundamental parameters of the neutron and in searches for new CP violating processes or exotic interactions beyond the Standard Model of particle physics. The most prominent example is the search for a permanent electric dipole moment of the neutron (nEDM). We have performed an experimental comparison of the leading UCN sources currently operating. We have used a 'standard' UCN storage bottle with a volume of 32 liters, comparable in size to nEDM experiments, which allows us to compare the UCN density available at a given beam port.
High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED
Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209Bi82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron–nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209Bi82+,80+ with a precision that is improve…
Experimental determination of anIπ=2−ground state inCu72,74
This article reports on the ground-state spin and moments measured in $^{72,74}\mathrm{Cu}$ using collinear laser spectroscopy at the CERN On-Line Isotope Mass Separator (ISOLDE) facility. From the measured hyperfine coefficients, the nuclear observables $\ensuremath{\mu}$(${}^{72}\mathrm{Cu})=\ensuremath{-}1.3472(10){\ensuremath{\mu}}_{N}$, $\ensuremath{\mu}({}^{74}\mathrm{Cu})=\ensuremath{-}1.068(3){\ensuremath{\mu}}_{N}$, $Q({}^{72}\mathrm{Cu})=+8(2) {\mathrm{efm}}^{2}$, $Q({}^{74}\mathrm{Cu})=+26(3) {\mathrm{efm}}^{2}$, $I({}^{72}\mathrm{Cu})=2$, and $I({}^{74}\mathrm{Cu})=2$ have been determined. Through a comparison of the measured magnetic moments with different models, the negative …
Discovery of a long-lived low-lying isomeric state in Ga-80
Collinear laser spectroscopy was performed on the $^{80}\mathrm{Ga}$ isotope at ISOLDE, CERN. A low-lying isomeric state with a half-life much greater than $200$ ms was discovered. The nuclear spins and moments of the ground and isomeric states and the isomer shift are discussed. Probable spins and parities are assigned to both long-lived states (${3}^{\ensuremath{-}}$ and ${6}^{\ensuremath{-}}$) deduced from a comparison of the measured moments to shell-model calculations.
Precision Test of Many-Body QED in theBe+2pFine Structure Doublet Using Short-Lived Isotopes
Absolute transition frequencies of the $2s\text{ }{^{2}S}_{1/2}\ensuremath{\rightarrow}2p\text{ }{^{2}P}_{1/2,3/2}$ transitions in ${\mathrm{Be}}^{+}$ were measured for the isotopes $^{7,9--12}\mathrm{Be}$. The fine structure splitting of the $2p$ state and its isotope dependence are extracted and compared to results of ab initio calculations using explicitly correlated basis functions, including relativistic and quantum electrodynamics effects at the order of $m{\ensuremath{\alpha}}^{6}$ and $m{\ensuremath{\alpha}}^{7} \mathrm{ln} \ensuremath{\alpha}$. Accuracy has been improved in both the theory and experiment by 2 orders of magnitude, and good agreement is observed. This represents on…
Optical spectroscopy and performance tests with a solid state laser ion source at HRIBF
An ISOLDE-type hot-cavity laser ion source based on high-repetition-rate Ti:Sapphire lasers has been set up at the Holifield radioactive ion beam facility. To assess the feasibility of the all-solid-state laser system for applications at advanced radioactive ion beam facilities, spectroscopy and performance tests have been conducted with this source. The results of recent studies on excitation schemes, source efficiency, beam emittance and ion time structure are presented.
Nuclear spins, magnetic moments, and quadrupole moments of Cu isotopes fromN=28toN=46: Probes for core polarization effects
Measurements of the ground-state nuclear spins and magnetic and quadrupole moments of the copper isotopes from $^{61}\mathrm{Cu}$ up to $^{75}\mathrm{Cu}$ are reported. The experiments were performed at the CERN online isotope mass separator (ISOLDE) facility, using the technique of collinear laser spectroscopy. The trend in the magnetic moments between the $N=28$ and $N=50$ shell closures is reasonably reproduced by large-scale shell-model calculations starting from a $^{56}\mathrm{Ni}$ core. The quadrupole moments reveal a strong polarization of the underlying Ni core when the neutron shell is opened, which is, however, strongly reduced at $N=40$ due to the parity change between the $\mat…
Detection system for forward emitted photons at the Experimental Storage Ring at GSI
A single photon counting system has been developed for efficient detection of forward emitted fluorescence photons at the Experimental Storage Ring (ESR) at GSI. The system employs a movable parabolic mirror with a central slit that can be positioned around the ion beam and a selected low noise photomultiplier for detection of the collected photons. Compared to the previously used system of mirror segments installed inside the ESR the collection efficiency for forward-emitted photons is improved by more than a factor of 5. No adverse effects on the stored ion beam have been observed during operation besides a small drop in the ion current of about 5% during movement of the mirror into the b…