0000000000004851

AUTHOR

Wolfgang Engel

PSCDGs of mouse multipotent adult germline stem cells can enter and progress through meiosis to form haploid male germ cells in vitro

Spermatogonial stem cells (SSCs) provide the basis for spermatogenesis throughout adult life by undergoing self-renewal and differentiation into sperm. SSC-derived cell lines called multipotent adult germline stem cells (maGSCs) were recently shown to be pluripotent and to have the same potential as embryonic stem cells (ESCs). In a differentiation protocol using retinoic acid (RA) and based on a double selection strategy, we have shown that ESCs are able to undergo meiosis and produce haploid male germ cells in vitro. Using this differentiation protocol we have now succeeded to generate haploid male germ cells from maGSCs in vitro. maGSCs derived from a Stra8-EGFP transgenic mouse line wer…

research product

Stage-specific germ-cell marker genes are expressed in all mouse pluripotent cell types and emerge early during induced pluripotency.

Embryonic stem cells (ESCs) generated from the in-vitro culture of blastocyst stage embryos are known as equivalent to blastocyst inner cell mass (ICM) in-vivo. Though several reports have shown the expression of germ cell/pre-meiotic (GC/PrM) markers in ESCs, their functional relevance for the pluripotency and germ line commitment are largely unknown. In the present study, we used mouse as a model system and systematically analyzed the RNA and protein expression of GC/PrM markers in ESCs and found them to be comparable to the expression of cultured pluripotent cells originated from the germ line. Further, siRNA knockdown experiments have demonstrated the parallel maintenance and independen…

research product

In Vitro-Differentiated Embryonic Stem Cells Give Rise to Male Gametes that Can Generate Offspring Mice

SummaryMale gametes originate from a small population of spermatogonial stem cells (SSCs). These cells are believed to divide infinitely and to support spermatogenesis throughout life in the male. Here, we developed a strategy for the establishment of SSC lines from embryonic stem (ES) cells. These cells are able to undergo meiosis, are able to generate haploid male gametes in vitro, and are functional, as shown by fertilization after intracytoplasmic injection into mouse oocytes. Resulting two-cell embryos were transferred into oviducts, and live mice were born. Six of seven animals developed to adult mice. This is a clear indication that male gametes derived in vitro from ES cells by this…

research product

Acrosin, the peculiar sperm-specific serine protease.

The sperm enzyme acrosin has long been known as one of the key enzymes in the mammalian fertilization process. Elucidation of primary structures of preproacrosin from various species have allowed a deeper insight into the structural organization and the complex evolution of the sperm proteinase acrosin. In addition to the typical elements of serine proteases, the acrosin molecule possesses one novel domain that might convey DNA-binding properties.

research product

Embryonic stem cell-related miRNAs are involved in differentiation of pluripotent cells originating from the germ line.

Cells originating from the germ cell lineage retain the remarkable property under special culture conditions to give rise to cells with embryonic stem cell (ESC) properties, such as the multipotent adult germline stem cells (maGSCs) derived from adult mouse testis. To get an insight into the mechanisms that control pluripotency and differentiation in these cells, we studied how differences observed during in vitro differentiation between ESCs and maGSCs are associated with differences at the level of microRNAs (miRNAs). In this work, we provide for a first time a connection between germ cell origin of maGSCs and their specific miRNA expression profile. We found that maGSCs express higher le…

research product

Zfp819, a novel KRAB-zinc finger protein, interacts with KAP1 and functions in genomic integrity maintenance of mouse embryonic stem cells

AbstractPluripotency is maintained by both known and unknown transcriptional regulatory networks. In the present study, we have identified Zfp819, a KRAB-zinc finger protein, as a novel pluripotency-related factor and characterized its role in pluripotent stem cells. We show that Zfp819 is expressed highly in various types of pluripotent stem cells but not in their differentiated counterparts. We identified the presence of non-canonical nuclear localization signals in particular zinc finger motifs and identified them as responsible for the nuclear localization of Zfp819. Analysis of the Zfp819 promoter region revealed the presence of a transcriptionally active chromatin signature. Moreover,…

research product

Global and gene-specific histone modification profiles of mouse multipotent adult germline stem cells

We previously reported the generation of multipotent adult germline stem cells (maGSCs) from spermatogonial stem cells (SSCs) isolated from adult mouse testis. In a later study, we substantiated the pluripotency of maGSCs by demonstrating their close similarity to pluripotent male embryonic stem cells (ESCs) at the epigenetic level of global and gene-specific DNA methylation. Here, we extended the comparative epigenetic analysis of maGSCs and male ESCs by investigating the second main epigenetic modification in mammals, i.e. global and gene-specific modifications of histones (H3K4 trimethylation, H3K9 acetylation, H3K9 trimethylation and H3K27 trimethylation). Using immunofluorescence stain…

research product

MicroRNA signature in various cell types of mouse spermatogenesis: Evidence for stage-specifically expressed miRNA-221, -203 and -34b-5p mediated spermatogenesis regulation

Background information Recently, it became apparent that microRNAs (miRNAs) can regulate gene expression post-transcriptionally. Despite the advances in identifying the testis-expressed miRNAs and their role in spermatogenesis, only few data are available showing the spatiotemporal expression of miRNAs during this process. Results To understand how different miRNAs can regulate germ cells differentiation, we generated a transgenic mouse model and purified pure populations of premeiotic (PrM) cells and primary spermatocytes (meiotic cells). We also established spermatogonial stem cell (SSC) culture using relatively simple and robust culture conditions. Comparison of global miRNA expression i…

research product

Comparative methylation profiles and telomerase biology of mouse multipotent adult germline stem cells and embryonic stem cells.

Recently, several groups described the isolation of mouse spermatogonial stem cells (SSCs) and their potential to develop to embryonic stem cell (ESC)-like cells, so-called multipotent germline stem cells (mGSCs). We were the first to derive such mGSCs from SSCs isolated from adult mouse testis and, therefore, called these mGSCs multipotent adult germline stem cells (maGSCs). Here, we compara- tively analyzed gene-specific and global DNA methylation profiles as well as the telomerase biology of several maGSC and male ESC lines. We show that undifferentiated maGSCs are very similar to undifferentiated male ESCs with regard to global DNA methylation, methylation of pluripotency marker gene lo…

research product

Multipotent adult germline stem cells and embryonic stem cells have similar microRNA profiles.

Spermatogonial stem cells (SSCs) isolated from the adult mouse testis and cultured have been shown to respond to culture conditions and become pluripotent, so called multipotent adult germline stem cells (maGSCs). microRNAs (miRNAs) belonging to the 290 and 302 miRNA clusters have been previously classified as embryonic stem cell (ESC) specific. Here, we show that these miRNAs generally characterize pluripotent cells. They are expressed not only in ESCs but also in maGSCs as well as in the F9 embryonic carcinoma cell (ECC) line. In addition, we tested the time-dependent influence of different factors that promote loss of pluripotency on levels of these miRNAs in all three pluripotent cell t…

research product

Männliche Keimzellen aus embryonalen Stammzellen

Zusammenfassung Die Grundlage für die lebenslange Differenzierung männlicher Keimzellen sind die spermatogonialen Stammzellen (SSC) im Testis (etwa 0,03% aller Testiszellen). Es ist gelungen, aus embryonalen Stammzellen (ES-Zellen) der Maus SSC zu generieren, die die Meiose und die Haploidisierung durchlaufen. Werden die entstehenden Spermien mit Hilfe von ICSI in unbefruchtete Eizellen eingebracht und die entstandenen 2-Zeller in den Uterus pseudoschwangerer Mäuse transferiert, werden lebensfähige Mäuse geboren. Die von uns entwickelte Strategie ermöglicht molekulare und biochemische Untersuchungen zur männlichen Keimzelldifferenzierung, insbesondere auch zur Meiose und zur Haploidisierung.

research product