0000000000004949

AUTHOR

Elena Jiménez-martí

0000-0002-1537-5337

showing 6 related works from this author

Genetic manipulation of HSP26 and YHR087W stress genes may improve fermentative behaviour in wine yeasts under vinification conditions

2008

Throughout wine production yeast cells are affected by a plethora of stress conditions that compromise their ability to carry out the whole process. In recent years important knowledge about the mechanisms involved in stress response in both laboratory and wine yeast strains has been obtained. Several studies have indicated that a correlation exists between stress resistance, expression of stress response genes and fermentative behaviour. In this work we introduce several genetic manipulations in two genes induced by several stress conditions: HSP26 (which encodes a heat shock protein) and YHR087W (encoding a protein of unknown function) in two different wine yeasts, ICV16 and ICV27. These …

GeneticsWineSaccharomyces cerevisiae ProteinsTime FactorsSPI1CentromereRNA-Binding ProteinsWineSaccharomyces cerevisiaeGeneral MedicineBiologyMicrobiologyYeastYeast in winemakingPlasmidYeastsHeat shock proteinFermentationGene expressionPromoter Regions GeneticGeneHeat-Shock ProteinsPlasmidsFood ScienceInternational Journal of Food Microbiology
researchProduct

The Saccharomyces cerevisiae Hot1p regulated gene YHR087W (HGI1) has a role in translation upon high glucose concentration stress.

2012

Abstract Background While growing in natural environments yeasts can be affected by osmotic stress provoked by high glucose concentrations. The response to this adverse condition requires the HOG pathway and involves transcriptional and posttranscriptional mechanisms initiated by the phosphorylation of this protein, its translocation to the nucleus and activation of transcription factors. One of the genes induced to respond to this injury is YHR087W. It encodes for a protein structurally similar to the N-terminal region of human SBDS whose expression is also induced under other forms of stress and whose deletion determines growth defects at high glucose concentrations. Results In this work …

Chromatin ImmunoprecipitationTranslation<it>Saccharomyces cerevisiae</it>Saccharomyces cerevisiae Proteinslcsh:QH426-470Monosaccharide Transport ProteinsSaccharomyces cerevisiaeSaccharomyces cerevisiaeBiologyGene YHR087WHog1pTranscripció genèticaEukaryotic translationStress PhysiologicalPolysomeGene Expression Regulation FungalGene expressionProtein biosynthesisHigh glucose osmotic stresslcsh:QH573-671Transcription factorMolecular BiologyRegulation of gene expressionGenetic transcriptionlcsh:CytologyComputational BiologyTranslation (biology)biology.organism_classificationBlotting NorthernExpressió gènicaYeastlcsh:GeneticsGlucoseBiochemistryMicroscopy FluorescencePolyribosomesProtein BiosynthesisPolysomesGene <it>YHR087W</it>Gene expressionLlevatsMitogen-Activated Protein KinasesHot1pTranscription FactorsResearch ArticleBMC molecular biology
researchProduct

Transcriptional Response of Saccharomyces cerevisiae to Different Nitrogen Concentrations during Alcoholic Fermentation▿ †

2007

Gene expression profiles of a wine strain of Saccharomyces cerevisiae PYCC4072 were monitored during alcoholic fermentations with three different nitrogen supplies: (i) control fermentation (with enough nitrogen to complete sugar fermentation), (ii) nitrogen-limiting fermentation, and (iii) the addition of nitrogen to the nitrogen-limiting fermentation (refed fermentation). Approximately 70% of the yeast transcriptome was altered in at least one of the fermentation stages studied, revealing the continuous adjustment of yeast cells to stressful conditions. Nitrogen concentration had a decisive effect on gene expression during fermentation. The largest changes in transcription profiles were o…

:Biotecnologia Agrária e Alimentar [Ciências Agrárias]Ciências Agrárias::Biotecnologia Agrária e AlimentarNitrogenSaccharomyces cerevisiaeWineOxidative phosphorylationSaccharomyces cerevisiaeEthanol fermentationApplied Microbiology and BiotechnologySaccharomyces03 medical and health sciencesSaccharomycesTranscripció genèticaGene Expression Regulation FungalExpressió genèticaCluster AnalysisGlycolysis030304 developmental biologyDNA Primers0303 health sciencesScience & TechnologyEcologybiologyEthanol030306 microbiologyReverse Transcriptase Polymerase Chain ReactionGene Expression Profilingfood and beveragesbiology.organism_classificationPhysiology and BiotechnologyYeastRegulonBiochemistryFermentationFermentationFood ScienceBiotechnology
researchProduct

Addition of ammonia or amino acids to a nitrogen-depleted medium affects gene expression patterns in yeast cells during alcoholic fermentation

2007

Yeast cells require nitrogen and are capable of selectively using good nitrogen sources in preference to poor ones by means of the regulatory mechanism known as nitrogen catabolite repression (NCR). Herein, the effect of ammonia or amino acid addition to nitrogen-depleted medium on global yeast expression patterns in yeast cells was studied using alcoholic fermentation as a system. The results indicate that there is a differential reprogramming of the gene expression depending on the nitrogen source added. Ammonia addition resulted in a higher expression of genes involved in amino acids biosynthesis while amino acid addition prepares the cells for protein biosynthesis. Therefore, a high per…

Saccharomyces cerevisiae ProteinsBiologyApplied Microbiology and BiotechnologyMicrobiologySaccharomyceschemistry.chemical_compoundBiosynthesisAmmoniaGene expressionProtein biosynthesisRNA MessengerAmino AcidsGeneAmino acid synthesisOligonucleotide Array Sequence Analysischemistry.chemical_classificationEthanolReverse Transcriptase Polymerase Chain ReactionGene Expression ProfilingRNA FungalGeneral MedicineYeastBiosynthetic PathwaysCulture MediaAmino acidGene Expression RegulationBiochemistrychemistryProtein BiosynthesisFermentationFermentationFEMS Yeast Research
researchProduct

Saccharomyces cerevisiae signature genes for predicting nitrogen deficiency during alcoholic fermentation

2007

Genome-wide analysis of the wine yeast strain Saccharomyces cerevisiae PYCC4072 identified 36 genes highly expressed under conditions of low or absent nitrogen in comparison with a nitrogen-replete condition. Reverse transcription-PCR analysis for four of these transcripts with this strain and its validation with another wine yeast strain underlines the usefulness of these signature genes for predicting nitrogen deficiency and therefore the diagnosis of wine stuck/sluggish fermentations.

Ciências Agrárias::Biotecnologia Agrária e Alimentar:Biotecnologia Agrária e Alimentar [Ciências Agrárias]Saccharomyces cerevisiae ProteinsNitrogenSaccharomyces cerevisiaeGenes FungalSaccharomyces cerevisiaeEthanol fermentationBiologyApplied Microbiology and BiotechnologySaccharomycesGenètica molecular03 medical and health sciencesSaccharomycesGene Expression Regulation Fungal030304 developmental biologyOligonucleotide Array Sequence AnalysisWineGenetics0303 health sciencesScience & TechnologyEcologyModels Genetic030306 microbiologyNitrogen deficiencyReverse Transcriptase Polymerase Chain Reactionfood and beveragesbiology.organism_classificationPhysiology and BiotechnologyYeastYeast in winemakingBiochemistryAlcoholsFermentationFermentationFood ScienceBiotechnology
researchProduct

Molecular response of Saccharomyces cerevisiae wine and laboratory strains to high sugar stress conditions.

2010

One of the stress conditions that can affect Saccharomyces cerevisiae cells during their growth is osmotic stress. Under particular environments (for instance, during the production of alcoholic beverages) yeasts have to cope with osmotic stress caused by high sugar concentrations. Although the molecular changes and pathways involved in the response to saline or sorbitol stress are widely understood, less is known about how cells respond to high sugar concentrations. In this work we present a comprehensive study of the response to this form of stress which indicates important transcriptomic changes, especially in terms of the genes involved in both stress response and respiration, and the i…

Saccharomyces cerevisiae ProteinsOsmotic shockProteomeMutantSaccharomyces cerevisiaeWineSaccharomyces cerevisiaeBiologyMicrobiologychemistry.chemical_compoundStress PhysiologicalGene Expression Regulation FungalGene expressionPhosphorylationOligonucleotide Array Sequence AnalysisGene Expression ProfilingRNA FungalGeneral Medicinebiology.organism_classificationYeastGlucosechemistryBiochemistryMolecular ResponseProteomeMutationSorbitolMitogen-Activated Protein KinasesFood ScienceInternational journal of food microbiology
researchProduct