0000000000004951

AUTHOR

Arlete Mendes-faia

0000-0002-3033-3418

Expression profile of genes involved in hydrogen sulphide liberation by Saccharomyces cerevisiae grown under different nitrogen concentrations

AbstractThe present work aims to elucidate molecular mechanisms underlying hydrogen sulphide production in S. cerevisiae associated to nitrogen deficiency. To assess, at a genome-wide level, how the yeast strain adapted to the progressive nitrogen depletion and to nitrogen re-feeding, gene expression profiles were evaluated during fermentation at different nitrogen concentrations, using the DNA array technology. The results showed that most MET genes displayed higher expression values at the beginning of both control and N-limiting fermentation, just before the time at which the release of sulphide was observed. MET genes were downregulated when yeast stopped growing which could associate M…

research product

Transcriptional Response of Saccharomyces cerevisiae to Different Nitrogen Concentrations during Alcoholic Fermentation▿ †

Gene expression profiles of a wine strain of Saccharomyces cerevisiae PYCC4072 were monitored during alcoholic fermentations with three different nitrogen supplies: (i) control fermentation (with enough nitrogen to complete sugar fermentation), (ii) nitrogen-limiting fermentation, and (iii) the addition of nitrogen to the nitrogen-limiting fermentation (refed fermentation). Approximately 70% of the yeast transcriptome was altered in at least one of the fermentation stages studied, revealing the continuous adjustment of yeast cells to stressful conditions. Nitrogen concentration had a decisive effect on gene expression during fermentation. The largest changes in transcription profiles were o…

research product

Saccharomyces cerevisiae signature genes for predicting nitrogen deficiency during alcoholic fermentation

Genome-wide analysis of the wine yeast strain Saccharomyces cerevisiae PYCC4072 identified 36 genes highly expressed under conditions of low or absent nitrogen in comparison with a nitrogen-replete condition. Reverse transcription-PCR analysis for four of these transcripts with this strain and its validation with another wine yeast strain underlines the usefulness of these signature genes for predicting nitrogen deficiency and therefore the diagnosis of wine stuck/sluggish fermentations.

research product