6533b81ffe1ef96bd12779ff

RESEARCH PRODUCT

Expression profile of genes involved in hydrogen sulphide liberation by Saccharomyces cerevisiae grown under different nitrogen concentrations

Ana Mendes-ferreiraArlete Mendes-faiaCecília LeãoMarcel·lí Del OlmoCatarina Barbosa

subject

0303 health sciencesbiologyChemistryNitrogen deficiencySaccharomyces cerevisiaebiology.organism_classificationYeast03 medical and health scienceschemistry.chemical_compound0302 clinical medicineBiosynthesisBiochemistry030220 oncology & carcinogenesisGene expressionGeneral Materials ScienceFermentationDNA microarrayGene030304 developmental biology

description

AbstractThe present work aims to elucidate molecular mechanisms underlying hydrogen sulphide production in S. cerevisiae associated to nitrogen deficiency. To assess, at a genome-wide level, how the yeast strain adapted to the progressive nitrogen depletion and to nitrogen re-feeding, gene expression profiles were evaluated during fermentation at different nitrogen concentrations, using the DNA array technology. The results showed that most MET genes displayed higher expression values at the beginning of both control and N-limiting fermentation, just before the time at which the release of sulphide was observed. MET genes were downregulated when yeast stopped growing which could associate MET gene expression levels with cell growth. The over expression of MET genes after nitrogen addition was confirmed by a new release of H2S during the new set of fermentation experiments. In addition, to confirm gene expression profiles observed from macroarray results, real time RT-PCR was performed on 6 genes using additional sets of biological replicates. These genes were selected based on the assumption that differences in sulphide production observed among strains are due to genetic variations of the expression of genes involved in the Sulphate Reduction Pathway. An integration of expression data of genes involved in sulphur assimilation and sulphur amino acid biosynthesis with hydrogen sulphide production is presented.

https://doi.org/10.1038/npre.2008.2736.1