0000000000005155
AUTHOR
Jugal Kishore Sahoo
Amine functionalized ZrO2 nanoparticles as biocompatible and luminescent probes for ligand specific cellular imaging
Surface functionalized ZrO2 nanoparticles show strong photoluminescence and are a versatile tool for cellular targeting due to their chemical functionality. They are highly photostable, biocompatible and amenable to coupling with bioligands (e.g. secondary goat anti-rabbit antibody (GAR) and tri-phenyl phosphine (TPP)) via carbodiimide chemistry. Antibody (GAR) functionalized ZrO2 nanoparticles were used to image the nuclear protein Sirt6, whereas triphenyl phosphonium ion (TPP) functionalized ZrO2 nanoparticles specifically targeted the mitochondria. The versatility and easiness of the ZrO2 surface modification opens up new possibilities for designing non-toxic water dispersible and photos…
Molecular Camouflage: Making Use of Protecting Groups To Control the Self-Assembly of Inorganic Janus Particles onto Metal-Chalcogenide Nanotubes by Pearson Hardness
Hard and soft: Binding of inorganic Pt@Fe3O4 Janus particles to WS2 nanotubes through their Pt or Fe3O4 domains is governed by the difference in Pearson hardness: the soft Pt block has a higher sulfur affinity than the harder magnetite face; thus the binding proceeds preferentially through the Pt face. This binding preference can be reversed by masking the Pt face with an organic protecting group.
Reversible Selbstorganisation von Metallchalkogenid-Metalloxid- Nanostrukturen basierend auf dem Pearson-Konzept
&Titel gek rzt. OK?& Die Nanotechnologie hat ein Entwicklungsstadium erreicht, in dem nicht mehr einzelne Nanopartikel, sondern komplexere Systeme im Fokus des Interesses stehen. Solche Strukturen bestehen aus zwei oder mehr unterschiedlichen Materialien, wie Metall-HalbleiterHybride, die die Eigenschaften beider Materialien effektiv vereinen. Der Aufbau von Nanopartikeln aus mehreren Komponenten mit unterschiedlichen optischen, elektronischen, magnetischen oder chemischen Eigenschaften kann zu neuartigen Funktionalit ten f hren, die unabh ngig von den einzelnen Komponenten masgeschneidert werden k nnen, um spezifischen Anforderungen zu gen gen. M gliche Anwendungen liegen in Gebieten wie d…
Reversible self-assembly of metal chalcogenide/metal oxide nanostructures based on Pearson hardness.
Nanotechnology has reached a stage of development where not individual nanoparticles but rather systems of greater complexity are the focus of concern. These complex structures incorporate two or more types of materials, an example of which is the formation of metal–semiconductor hybrids, which effectively combine the properties of both materials. The assembly of multicomponent nanoparticles from constituents with different optical, electrical, magnetic, and chemical properties can lead to novel functionalities that are independent of the individual components and may be tailored to fit a specific application. These applications include such far-reaching challenges as solar energy conversio…
Hydrogen peroxide sensors for cellular imaging based on horse radish peroxidase reconstituted on polymer-functionalized TiO2 nanorods
We describe the reconstitution of apo-horse radish peroxidase (apo-HRP) onto TiO2 nanorods functionalized with a multifunctional polymer. After functionalization, the horse radish peroxidase (HRP) functionalized TiO2 nanorods were well dispersible in aqueous solution, catalytically active and biocompatible, and they could be used to quantify and image H2O2 which is a harmful secondary product of cellular metabolism. The shape, size and structure of TiO2 nanorods (anatase) were analyzed by transmission electron microscopy (TEM), high resolution TEM (HRTEM), electron diffraction (ED) and X-ray diffraction (XRD). The surface functionalization, HRP reconstitution and catalytic activity were con…
ChemInform Abstract: Synthesis and Functionalization of Chalcogenide Nanotubes
New synthetic approaches to MS 2 (M = Sn, Nb, Mo, W) chalcogenide nanostructures are highlighted. Most chalcogenide particles can be functionalized directly with inorganic nanoparticles such as Au, ZnO or MnO. Depending on the Pearson hardness of the metal involved, the functionalization may be reversible or irreversible. A covalent functionalization strategy is based on a steric shielding of the coordination sphere of transition metal atoms in such a way that only coordination sites are available for bonding to the chalcogenide surface. This allows the immobilization of fluorophors, redox active groups or proteins onto chalcogenide nanoparticle.
Synthesis and functionalization of chalcogenide nanotubes
New synthetic approaches to MS 2 (M = Sn, Nb, Mo, W) chalcogenide nanostructures are highlighted. Most chalcogenide particles can be functionalized directly with inorganic nanoparticles such as Au, ZnO or MnO. Depending on the Pearson hardness of the metal involved, the functionalization may be reversible or irreversible. A covalent functionalization strategy is based on a steric shielding of the coordination sphere of transition metal atoms in such a way that only coordination sites are available for bonding to the chalcogenide surface. This allows the immobilization of fluorophors, redox active groups or proteins onto chalcogenide nanoparticle.
Titelbild: Reversible Selbstorganisation von Metallchalkogenid-Metalloxid- Nanostrukturen basierend auf dem Pearson-Konzept (Angew. Chem. 41/2010)
Cover Picture: Reversible Self-Assembly of Metal Chalcogenide/Metal Oxide Nanostructures Based on Pearson Hardness (Angew. Chem. Int. Ed. 41/2010)
Soluble IF-ReS2 nanoparticles by surface functionalization with terpyridine ligands.
A major drawback in the application of layered chalcogenide nanoparticles/tubes is their inertness to chemical and biological modification and functionalization. Their potential use in composite materials might be greatly enhanced by improving the chalcogenide/matrix interface bonding. A novel modification strategy for layered chalcogenide nanoparticles based on the chalcophilic affinity of metals and the chelating terpyridine is reported. The terpyridine anchor group can be conjugated to fluorescent tags or hydrophilic/hydrophobic groups that confer solubility in various solvents to the otherwise insoluble chalcogenide nanoparticles. The functionalized particles are characterized using TEM…
Growth Mechanism and Surface Functionalization of Metal Chalcogenides Nanostructures
Following the discovery of carbon fullerenes and nanotubes (NTs), nanostructured materials and their synthesis have attracted tremendous attention due to their superior mechanical properties, their unique electronic behavior, and their high potential in making technologically advanced nanodevices. Among different classes, layered metal chalcogenides nanostructures are of interest for a variety of applications ranging from nanoelectronics or as source materials for energy applications, nanotribology and in heterogeneous catalysis. These nanoparticles are metastable phases. Therefore, equilibrium methods are necessary to prevent the formation of the thermodynamically stable bulk phase. On the…
Metal ion affinity-based biomolecular recognition and conjugation inside synthetic polymer nanopores modified with iron-terpyridine complexes.
Here we demonstrate a novel biosensing platform for the detection of lactoferrin (LFN) via metal-organic frameworks, in which the metal ions have accessible free coordination sites for binding, inside the single conical nanopores fabricated in polymeric membrane. First, monolayer of amine-terminated terpyridine (metal-chelating ligand) is covalently immobilized on the inner walls of the nanopore via carbodiimide coupling chemistry. Second, iron-terpyridine (iron-terPy) complexes are obtained by treating the terpyridine modified-nanopores with ferrous sulfate solution. The immobilized iron-terPy complexes can be used as recognition elements to fabricate biosensing nanodevice. The working pri…
Graphene-type sheets of Nb(1-x)W(x)S2: synthesis and in situ functionalization.
Enlightened by the discovery of graphenes, a variety of inorganic analogues have been synthesized and characterized in recent years. Solvated Nb1−xWxS2 analogues of graphene-type sheets were prepared by lithiation and exfoliation of multistacked Nb1−xWxS2 coin roll nanowires (CRNWs), followed by in situ functionalization with gold nanoparticles to synthesize gold-loaded Nb1−xWxS2/Au nanocomposites. The Nb1−xWxS2 nanosheets and the corresponding Nb1−xWxS2/Au nanocomposites were characterized by high resolution electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDX), scanning transmission electron microscopy (STEM), dynamic light scattering (DLS) and scanning force microscopy …
Rational assembly and dual functionalization of Au@MnO heteroparticles on TiO2 nanowires
Au–MnO heteroparticles were immobilized on the surface of TiO2 nanowires and tagged subsequently with a fluorescent ligand. The immobilization of the Au@MnO heteroparticles was achieved by functionalizing the TiO2 nanowire support with a polymer containing catechol anchor groups for binding to the metal oxide surface and amine groups for conjugation to the Au domains of the Au@MnO heteroparticles. The Au domain of the resulting TiO2@Au–MnO nanocomposite could be functionalized selectively with a thiol-tagged 24 mer oligomer containing Texas red (SH-ODN-TXS red), whereas a green dye (NBD–Cl) could be anchored selectively to the TiO2 “support” using the free amine groups of the polymeric liga…
From Single Molecules to Nanoscopically Structured Materials: Self-Assembly of Metal Chalcogenide/Metal Oxide Nanostructures Based on the Degree of Pearson Hardness
A chemically specific and facile method for the immobilization of metal oxide nanoparticles onto the surface of IF-MoS2 nested fullerenes is reported. The modification strategy is based on the chalcophilic affinity of transition metals such as Fe2+/Fe3+, Fe3+, or Zn2+ as described by the Pearson HSAB concept. The binding capabilities of the 3d metals are dictated by their Pearson hardness. Pearson hard cations such as Fe3+ (Fe2O3) do not bind to the chalcogenide surfaces; borderline metals such as Fe2+ (Fe3O4) or Zn2+ (ZnO) bind reversibly. Pearson-soft metals like Au bind irreversibly. The immobilization of metal oxide nanoparticle colloids was monitored by transmission electron microscopy…
IF-ReS2 with Covalently Linked Porphyrin Antennae
The preparation of inorganic and organic hybrid materials, of metals or semiconductor systems which are functionalized with functional molecules to fabricate devices — nanotechnology — is currently an area of intense activity in both fundamental science and applied science on an international scale. Principally, nanotechnology aims at manipulating atoms, molecules, and nanosize particles in a precise and controlled manner in order to build materials with a fundamentally new organization and novel properties. The embryonic stage of nanotechnology is atomic assembly, whereas the mature form of nanotechnology will be molecular assembly to make nano-building blocks for the design of nanocomposi…
Surface Defects as a Tool to Solubilize and Functionalize WS 2 Nanotubes
Layered transition metal dichalcogenides contain a number of crystal defects which significantly change their properties may be beneficial or detrimental for a specific application. We have prepared defect-rich multiwalled WS2 nanotubes by reductive sulfidization of W18O49 nanowires that were obtained solvothermally from tungsten chloride in different alcohols. The synthesis of the W18O49 nanowires was monitored and their morphological characteristics (e. g. length, rigidity and aspect ratio) are described in detail. The effect of morphology of the nanowires on the synthesis of WS2 nanotubes was investigated in order to obtain WS2 nanotubes that are highly solvent dispersible. Dispersions o…