Multifunctional superparamagnetic MnO@SiO2 core/shell nanoparticles and their application for optical and magnetic resonance imaging
Highly biocompatible multifunctional nanocomposites consisting of monodisperse manganese oxide nanoparticles with luminescent silica shells were synthesized by a combination of w/o-microemulsion techniques and common sol–gel procedures. The nanoparticles were characterized by TEM analysis, powder XRD, SQUID magnetometry, FT-IR, UV/vis and fluorescence spectroscopy and dynamic light scattering. Due to the presence of hydrophilic poly(ethylene glycol) (PEG) chains on the SiO2 surface, the nanocomposites are highly soluble and stable in various aqueous solutions, including physiological saline, buffer solutions and human blood serum. The average number of surface amino groups available for lig…
Synthesis and bio-functionalization of magnetic nanoparticles for medical diagnosis and treatment
The synthesis of multifunctional magnetic nanoparticles (NPs) is a highly active area of current research located at the interface between materials science, biotechnology and medicine. By virtue of their unique physical properties magnetic nanoparticles are emerging as a new class of diagnostic probes for multimodal tracking and as contrast agents for MRI. Furthermore, they show great potential as carriers for targeted drug and gene delivery, since reactive agents, such as drug molecules or large biomolecules (including genes and antibodies), can easily be attached to their surface. On the other hand, the fate of the nanoparticles inside the body is mainly determined by the interactions wi…
Functionalized magnetic nanoparticles for selective targeting of cells
AbstractInitiation of pathways that lead to proliferation and chemoresistance by Toll-like receptors (TLRs) is an important factor in cancer progression. Here, we show the response of human cancer cells to TLR signaling inevitably linked to tumor biology. The approach is based on tailored multifunctional magnetic nanoparticles equipped with pathogen-derived ligands (CpG) functioning as TLR agonists (molecular component) to investigate the impact of transcription factor immune activation on human cancer cells. Magnetic nanoparticles (MnO and bifunctional Au-MnO) particles were covalently coated with a multifunctional polymer, displaying no cytotoxicity, to being able to enter cells while car…
Reversible Selbstorganisation von Metallchalkogenid-Metalloxid- Nanostrukturen basierend auf dem Pearson-Konzept
&Titel gek rzt. OK?& Die Nanotechnologie hat ein Entwicklungsstadium erreicht, in dem nicht mehr einzelne Nanopartikel, sondern komplexere Systeme im Fokus des Interesses stehen. Solche Strukturen bestehen aus zwei oder mehr unterschiedlichen Materialien, wie Metall-HalbleiterHybride, die die Eigenschaften beider Materialien effektiv vereinen. Der Aufbau von Nanopartikeln aus mehreren Komponenten mit unterschiedlichen optischen, elektronischen, magnetischen oder chemischen Eigenschaften kann zu neuartigen Funktionalit ten f hren, die unabh ngig von den einzelnen Komponenten masgeschneidert werden k nnen, um spezifischen Anforderungen zu gen gen. M gliche Anwendungen liegen in Gebieten wie d…
Reversible self-assembly of metal chalcogenide/metal oxide nanostructures based on Pearson hardness.
Nanotechnology has reached a stage of development where not individual nanoparticles but rather systems of greater complexity are the focus of concern. These complex structures incorporate two or more types of materials, an example of which is the formation of metal–semiconductor hybrids, which effectively combine the properties of both materials. The assembly of multicomponent nanoparticles from constituents with different optical, electrical, magnetic, and chemical properties can lead to novel functionalities that are independent of the individual components and may be tailored to fit a specific application. These applications include such far-reaching challenges as solar energy conversio…
Titelbild: Reversible Selbstorganisation von Metallchalkogenid-Metalloxid- Nanostrukturen basierend auf dem Pearson-Konzept (Angew. Chem. 41/2010)
Improvement of solubility and biocompatibility of MnO based nanoparticles in aqueous solutions
ABSTRACTMnO nanoparticles were surface modified using two different multifunctional polymers. By introducing a PEG group, the long term stability, MRI applicability and sterile filtration could be greatly improved. Furthermore, PEGylated MnO NPs were less toxic compared to non-PEGylated NPs. The results suggest that these nanoparticles are suitable for in vivo applications.
Synthesis, characterization and functionalization of nearly mono-disperse copper ferrite CuxFe3−xO4 nanoparticles
Magnetic nanocrystals are of great interest for a fundamental understanding of nanomagnetism and for their technological applications. CuxFe3−xO4 nanocrystals (x ≈ 0.32) with sizes ranging between 5 and 7 nm were synthesized starting from Cu(HCOO)2 and Fe(CO)5 using oleic acid and oleylamine as surfactants. The nanocrystals were characterized by high-resolution transmission electron microscopy (HRTEM), electron diffraction (ED), magnetization studies and Mossbauer spectroscopy. The CuxFe3−xO4 particles are superparamagnetic at room temperature 300 K with a saturation magnetization of 30.5 emu g−1. Below their blocking temperature of 60 K, they become ferrimagnetic, and at 5 K they show a co…
Engineered Multifunctional Nanotools for Biological Applications
Smart multifunctional magnetic nanoparticles are popular candidates for several biological applications owing to their intrinsic magnetic property and diverse applications that range from rare protein separation and biomedical utilization to cancer therapy and diagnostics. A universal protocol, for the development of such nanocarriers, is highly desirable for scientists with different backgrounds so that custom-made multifunctional nanoparticles can be developed to address their needs, among which are the superparamagnetic iron oxide and manganese oxide nanoparticles that are synthesized through high temperature decomposition reactions. However, an interface is needed to present these inorg…
Au@MnO-“Nanoblumen” - Hybrid-Nanokomposite zur selektiven dualen Funktionalisierung und Bildgebung
In j ngster Vergangenheit hat das Interesse f r die Entwicklung von Hybrid-Nanostrukturen, die sich aus verschiedenen Materialien zusammensetzen, in erheblichem Mase zugenommen. Es wurde berichtet, dass die Zusammenf hrung verschiedener Nanomaterialien, die ihrerseits spezifische optische, magnetische oder elektronische Eigenschaften aufweisen, zu Kompositen aus mehreren dieser Komponenten, deren individuelle Eigenschaften ver ndern oder sogar verbessern k nnen. Durch gezielte Optimierung der Struktur und der Grenzfl chenwechselwirkung innerhalb der Nanokomposite k nnte eine breite Basis f r zuk nftige Technologien geschaffen werden, beispielweise f r die synchrone Biomarkierung, Proteintre…
Synthesis and Characterization of Monodisperse Manganese Oxide Nanoparticles−Evaluation of the Nucleation and Growth Mechanism
Magnetic nanoparticles of the 3d transition metal oxides have gained enormous interest for applications in various fields such as data storage devices, catalysis, drug-delivery, and biomedical imaging. One major requirement for these applications is a narrow size distribution of the particles. We have studied the nucleation and growth mechanism for the formation of MnO nanoparticles synthesized by decomposition of a manganese oleate complex in high boiling nonpolar solvents using TEM, FT-IR, and AAS analysis. The exceptionally narrow size distribution indicates that nucleation and growth are clearly separated. This leads to a uniform growth with a very narrow size distribution on the existi…
Cover Picture: Reversible Self-Assembly of Metal Chalcogenide/Metal Oxide Nanostructures Based on Pearson Hardness (Angew. Chem. Int. Ed. 41/2010)
Phase separated Cu@Fe3O4 heterodimer nanoparticles from organometallic reactants
Cu@Fe3O4 heteroparticles with distinct morphologies were synthesized from organometallic reactants. The shape of the magnetic domains could be controlled by the solvent and reaction conditions. They display magnetic and optical properties that are useful for simultaneous magnetic and optical detection. After functionalization, the Cu@Fe3O4 heterodimers become water soluble. The morphology, structure, magnetic and optical properties of the as-synthesized heterodimer nanoparticles were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), mossbauer spectroscopy, superconducting quantum interference device (SQUID) magnetometry, and dark field imaging. A special a…
Au@MnO nanoflowers: hybrid nanocomposites for selective dual functionalization and imaging.
Recently, the development of hybrid nanostructures consisting of various materials has attracted considerable interest. The assembly of different nanomaterials with specific optical, magnetic, or electronic properties to multicomponent composites can change and even enhance the properties of the individual constituents. Specifically tuning the structure and interface interactions within the nanocomposites has resulted in novel platforms of materials that may lead the way to various future technologies, such as synchronous biolabeling, protein separation and detection, heterogeneous catalysis, and multimodal imaging in biomedicine. Of the various kinds of nanomaterials, gold nanorods show an…
Synthesis and Magnetic Properties of FePt@MnO Nano-heteroparticles
Monodisperse FePt@MnO nano-heteroparticles with different sizes and morphologies were prepared by a seed-mediated nucleation and growth technique. Both size and morphology of the individual domains could be controlled by adjustment of the synthetic parameters. As a consequence, different particle constructs, including dimers, dumbbell-like particles, and flowerlike particles, could be obtained by changing the polarity of the solvent. The FePt@MnO nano-heteroparticles were thoroughly characterized by high resolution transmission electron microscopy (HR-TEM) and X-ray diffraction (XRD) analyses and superconducting quantum interference device (SQUID) magnetometry. Due to a sufficient lattice m…
Rational assembly and dual functionalization of Au@MnO heteroparticles on TiO2 nanowires
Au–MnO heteroparticles were immobilized on the surface of TiO2 nanowires and tagged subsequently with a fluorescent ligand. The immobilization of the Au@MnO heteroparticles was achieved by functionalizing the TiO2 nanowire support with a polymer containing catechol anchor groups for binding to the metal oxide surface and amine groups for conjugation to the Au domains of the Au@MnO heteroparticles. The Au domain of the resulting TiO2@Au–MnO nanocomposite could be functionalized selectively with a thiol-tagged 24 mer oligomer containing Texas red (SH-ODN-TXS red), whereas a green dye (NBD–Cl) could be anchored selectively to the TiO2 “support” using the free amine groups of the polymeric liga…
From Single Molecules to Nanoscopically Structured Materials: Self-Assembly of Metal Chalcogenide/Metal Oxide Nanostructures Based on the Degree of Pearson Hardness
A chemically specific and facile method for the immobilization of metal oxide nanoparticles onto the surface of IF-MoS2 nested fullerenes is reported. The modification strategy is based on the chalcophilic affinity of transition metals such as Fe2+/Fe3+, Fe3+, or Zn2+ as described by the Pearson HSAB concept. The binding capabilities of the 3d metals are dictated by their Pearson hardness. Pearson hard cations such as Fe3+ (Fe2O3) do not bind to the chalcogenide surfaces; borderline metals such as Fe2+ (Fe3O4) or Zn2+ (ZnO) bind reversibly. Pearson-soft metals like Au bind irreversibly. The immobilization of metal oxide nanoparticle colloids was monitored by transmission electron microscopy…
Highly soluble multifunctional MnO nanoparticles for simultaneous optical and MRI imaging and cancer treatment using photodynamic therapy
Superparamagnetic MnO nanoparticles were functionalized using a hydrophilic ligand containing protoporphyrin IX as photosensitizer. By virtue of their magnetic properties these nanoparticles may serve as contrast enhancing agents for magnetic resonance imaging (MRI), while the fluorescent target ligand protoporphyrin IX allows simultaneous tumor detection and treatment by photodynamic therapy (PDT). Caki-1 cells were incubated with these nanoparticles. Subsequent exposure to UV light lead to cell apoptosis due to photoactivation of the photosensitizer conjugated to the nanoparticles. This method offers great diagnostic potential for highly proliferative tissues, including tumors. In additio…
How do different surface modification strategies affect the properties of MnO nanoparticles for biomedical applications? Comparison of PEGylated and SiO2-coated MnO nanoparticles
ABSTRACTMnO nanoparticles (NPs) were surface functionalized by two different approaches, (1) using a dopamine-poly(ethylene glycol) (PEG) (DA-PEG) ligand and (2) by encapsulation within a thin silica shell applying a novel approach. Both MnO@DA-PEG and MnO@SiO2 NPs exhibited excellent long-term stability in physiological solutions. In addition, the cytotoxic potential of both materials was comparatively low. Furthermore, owing to the magnetic properties of MnO NPs, both MnO@DA-PEG and MnO@SiO2 lead to a shortening of the longitudinal relaxation time T1 in MRI. In comparison to the PEGylated MnO NPs, the presence of a thin silica shell led to a greater stability of the MnO core itself by pre…