0000000000006038
AUTHOR
Asgar Abbaszadeh
Digital background calibration algorithm and its FPGA implementation for timing mismatch correction of time-interleaved ADC
Sample time error can degrade the performance of time-interleaved analog to digital converters (TIADCs). A fully digital background algorithm is presented in this paper to estimate and correct the timing mismatch errors between four interleaved channels, together with its hardware implementation. The proposed algorithm provides low computation burden and high performance. It is based on the simplified representation of the coefficients of the Lagrange interpolator. Simulation results show that it can suppress error tones in all of the Nyquist band. Results show that, for a four-channel TIADC with 10-bit resolution, the proposed algorithm improves the signal to noise and distortion ratio (SN…
An Scalable matrix computing unit architecture for FPGA and SCUMO user design interface
High dimensional matrix algebra is essential in numerous signal processing and machine learning algorithms. This work describes a scalable square matrix-computing unit designed on the basis of circulant matrices. It optimizes data flow for the computation of any sequence of matrix operations removing the need for data movement for intermediate results, together with the individual matrix operations’ performance in direct or transposed form (the transpose matrix operation only requires a data addressing modification). The allowed matrix operations are: matrix-by-matrix addition, subtraction, dot product and multiplication, matrix-by-vector multiplication, and matrix by scalar multiplication.…
Low complexity digital background calibration algorithm for the correction of timing mismatch in time-interleaved ADCs
Abstract A low-complexity post-processing algorithm to estimate and compensate for timing skew error in a four-channel time-interleaved analog to digital converter (TIADC) is presented in this paper, together with its hardware implementation. The Lagrange interpolator is used as the reconstruction filter which alleviates online interpolator redesign by using a simplified representation of coefficients. Simulation results show that the proposed algorithm can suppress error tones for input signal frequency from 0 to 0.4 f s . The proposed structure has, at least, 41% reduction in the number of required multipliers. Implementation of the algorithm, for a four-channel 10-bit TIADC, show that, f…