0000000000006065

AUTHOR

Alessio Recati

0000-0002-8682-2034

showing 8 related works from this author

Nonlocal density correlations as a signature of Hawking radiation from acoustic black holes

2008

We have used the analogy between gravitational systems and nonhomogeneous fluid flows to calculate the density-density correlation function of an atomic Bose-Einstein condensate in the presence of an acoustic black hole. The emission of correlated pairs of phonons by Hawking-like process results into a peculiar long-range density correlation. Quantitative estimations of the effect are provided for realistic experimental configurations.

PhysicsCondensed Matter::Quantum GasesBOSONSSonic black holeQuantum field theory in curved spacetimePhononAtomic and Molecular Physics and OpticsBlack holeGravitationCorrelation function (statistical mechanics)General Relativity and Quantum CosmologyHIERARCHYQuantum mechanicsQuantum electrodynamicsANALOGOUTPUT COUPLERSignature (topology)ATOM LASERHawking radiation
researchProduct

Collective decoherence of cold atoms coupled to a Bose-Einstein condensate

2009

We examine the time evolution of cold atoms (impurities) interacting with an environment consisting of a degenerate bosonic quantum gas. The impurity atoms differ from the environment atoms, being of a different species. This allows one to superimpose two independent trapping potentials, each being effective only on one atomic kind, while transparent to the other. When the environment is homogeneous and the impurities are confined in a potential consisting of a set of double wells, the system can be described in terms of an effective spin-boson model, where the occupation of the left or right well of each site represents the two (pseudo)-spin states. The irreversible dynamics of such system…

PhysicsCondensed Matter::Quantum GasesQuantum PhysicsQuantum decoherenceDephasingDegenerate energy levelsTime evolutionGeneral Physics and AstronomyFOS: Physical sciencesBose Einstein condensates open quantum systems quantum information theoryCondensed Matter::Mesoscopic Systems and Quantum Hall Effectddc:law.inventionlawQuantum Gases (cond-mat.quant-gas)Quantum mechanicsMaster equationCondensed Matter - Quantum GasesQuantum Physics (quant-ph)Bose–Einstein condensateBosonCoherence (physics)
researchProduct

Acoustic white holes in flowing atomic Bose-Einstein condensates

2010

International audience; We study acoustic white holes in a steadily flowing atomic Bose-Einstein condensate. A white hole configuration is obtained when the flow velocity goes from a super-sonic value in the upstream region to a sub-sonic one in the downstream region. The scattering of phonon wavepackets on a white hole horizon is numerically studied in terms of the Gross-Pitaevskii equation of mean-field theory: dynamical stability of the acoustic white hole is found, as well as a signature of a nonlinear back-action of the incident phonon wavepacket onto the horizon. The correlation pattern of density fluctuations is numerically studied by means of the truncated-Wigner method which includ…

High Energy Physics - Theory[PHYS.COND.GAS]Physics [physics]/Condensed Matter [cond-mat]/Quantum Gases [cond-mat.quant-gas]PhononWhite holeGeneral Physics and AstronomyFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum Cosmology010305 fluids & plasmaslaw.inventionGeneral Relativity and Quantum CosmologyCorrelation functionlaw0103 physical sciences010306 general physicsSUPERFLOWBLACK-HOLESQuantum fluctuationPhysics[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]HorizonMean field theoryHigh Energy Physics - Theory (hep-th)Quantum Gases (cond-mat.quant-gas)Quantum electrodynamics[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Condensed Matter - Quantum GasesBose–Einstein condensateHawking radiation
researchProduct

Understanding Hawking Radiation from Simple Models of Atomic Bose-Einstein Condensates

2013

This chapter is an introduction to the Bogoliubov theory of dilute Bose condensates as applied to the study of the spontaneous emission of phonons in a stationary condensate flowing at supersonic speeds. This emission process is a condensed-matter analog of Hawking radiation from astrophysical black holes but is derived here from a microscopic quantum theory of the condensate without any use of the analogy with gravitational systems. To facilitate physical understanding of the basic concepts, a simple one-dimensional geometry with a stepwise homogenous flow is considered which allows for a fully analytical treatment.

Condensed Matter::Quantum GasesPhysicsHAWKING RADIATIONCondensed Matter::OtherPhononlaw.inventionBlack holeGravitationBogoliubov transformationBOSE EINSTEIN CONDENSATEFlow (mathematics)lawQuantum electrodynamicsSpontaneous emissionBose–Einstein condensateHawking radiation
researchProduct

Testing Hawking particle creation by black holes through correlation measurements

2010

Hawking's prediction of thermal radiation by black holes has been shown by Unruh to be expected also in condensed matter systems. We show here that in a black hole-like configuration realized in a BEC this particle-creation does indeed take place and can be unambiguously identified via a characteristic pattern in the density-density correlations. This opens the concrete possibility of the experimental verification of this effect.

PhysicsHigh Energy Physics - Theoryanalog modelsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)RADIAZIONE DI HAWKINGCONDENSATI DI BOSE EINSTEINGeneral Relativity and Quantum CosmologyBlack holeGeneral Relativity and Quantum CosmologyUnruh effectHawkingBECHigh Energy Physics - Theory (hep-th)Space and Planetary ScienceThermal radiationQuantum Gases (cond-mat.quant-gas)Quantum electrodynamicsParticleCondensed Matter - Quantum GasesMathematical Physics
researchProduct

COMPLEXITY, NOISE AND QUANTUM INFORMATION ON ATOM CHIPS

2008

The realization of quantum logic gates with neutral atoms on atom chips is investigated, including realistic features, such as noise and actual experimental setups.

Condensed Matter::Quantum GasesPhysicsQuantum networkPhysics and Astronomy (miscellaneous)Quantum sensorQuantum simulatorGATESQuantum logicComputer Science::Hardware ArchitectureQuantum circuitQuantum gateQuantum error correctionQuantum mechanicsPhysics::Atomic and Molecular ClustersPhysics::Atomic PhysicsQuantum informationHardware_LOGICDESIGNInternational Journal of Quantum Information
researchProduct

Numerical observation of Hawking radiation from acoustic black holes in atomic Bose–Einstein condensates

2008

We report numerical evidence of Hawking emission of Bogoliubov phonons from a sonic horizon in a flowing one-dimensional atomic Bose-Einstein condensate. The presence of Hawking radiation is revealed from peculiar long-range patterns in the density-density correlation function of the gas. Quantitative agreement between our fully microscopic calculations and the prediction of analog models is obtained in the hydrodynamic limit. New features are predicted and the robustness of the Hawking signal against a finite temperature discussed.

High Energy Physics - TheoryCondensed Matter::Quantum GasesPhysicsPhononHorizonFOS: Physical sciencesGeneral Physics and AstronomyGeneral Relativity and Quantum Cosmology (gr-qc)General Relativity and Quantum Cosmologylaw.inventionCondensed Matter - Other Condensed MatterGeneral Relativity and Quantum CosmologyCorrelation function (statistical mechanics)HawkingHigh Energy Physics - Theory (hep-th)lawQuantum electrodynamicsBose–Einstein condensateOther Condensed Matter (cond-mat.other)Hawking radiationNew Journal of Physics
researchProduct

Quantum control theory for decoherence suppression in quantum gates

2007

We show how quantum optimal control theory can help achieve high-fidelity quantum gates in real experimental settings. We discuss several optimization methods (from iterative algorithms to optimization by interference and to impulsive control) and different physical scenarios (from optical lattices to atom chips and to Rydberg atoms).

PhysicsQuantum technologyOpen quantum systemQuantum networkPhysics and Astronomy (miscellaneous)Quantum error correctionQuantum mechanicsQuantum algorithmPhysics::Atomic PhysicsQuantum informationQuantum dissipationQuantum computer
researchProduct