0000000000006299

AUTHOR

José M. Junquera-hernández

0000-0001-5795-214x

Efficient Green Light-Emitting Electrochemical Cells Based on Ionic Iridium Complexes with Sulfone-Containing Cyclometalating Ligands

A new approach to obtain green-emitting iridiumA complexes is described. The synthetic approach consists of introducing a methylsulfone electron-withdrawing substituent into a 4-phenylpyrazole cyclometalating ligand in order to stabilize the highest- occupied molecular orbital (HOMO). Six new complexes have been synthe- sized incorporating the conjugate base of 1-(4-(methylsulfonyl)phenyl)-1 H- pyrazole as the cyclometalating ligand. The complexes show green emission and very high photoluminescence quantum yields in both diluted and concentrated films. When used as the main active component in light-emit- ting electrochemical cells (LECs), green electroluminance is observed. High efficienci…

research product

Thienylpyridine-based cyclometallated iridium(III) complexes and their use in solid state light-emitting electrochemical cells

The synthesis and characterization of four iridium(iii) complexes [Ir(thpy)2(N^N)][PF6] where Hthpy = 2-(2'-thienyl)pyridine and N^N are 6-phenyl-2,2'-bipyridine (1), 4,4'-di-(t)butyl-2,2'-bipyridine (2), 4,4'-di-(t)butyl-6-phenyl-2,2'-bipyridine (3) or 4,4'-dimethylthio-2,2'-bipyridine (4) are described. The single crystal structures of ligand 4 and the complexes containing the [Ir(thpy)2(1)](+) and [Ir(thpy)2(4)](+) cations have been determined. In [Ir(thpy)2(1)](+), the pendant phenyl ring engages in an intra-cation π-stacking interaction with one of the thienyl rings in the solid state, and undergoes hindered rotation on the NMR timescale in [Ir(thpy)2(1)](+) and [Ir(thpy)2(3)](+). The …

research product

Bright and stable light-emitting electrochemical cells based on an intramolecularly π-stacked, 2-naphthyl-substituted iridium complex

The synthesis and characterization of a new cationic bis-cyclometallated iridium(III) complex and its use in solid-state light-emitting electrochemical cells (LECs) are described. The complex [Ir(ppy)2(Naphbpy)][PF6], where Hppy = 2-phenylpyridine and Naphbpy = 6-(2-naphthyl)-2,2′-bipyridine, incorporates a pendant 2-naphthyl unit that π-stacks face-to-face with the adjacent ppy− ligand and acts as a peripheral bulky group. The complex presents a structureless emission centred around 595–600 nm both in solution and in thin film with relatively low photoluminescence quantum yields compared with analogous systems. Density functional theory calculations support the charge transfer character of…

research product

Highly Stable Red-Light-Emitting Electrochemical Cells

The synthesis and characterization of a series of new cyclometalated iridium(III) complexes [Ir(ppy) 2 (N ∧ N)][PF 6 ] in which Hppy = 2-phenylpyridine and N ∧ N is (pyridin-2-yl)benzo[ d ]thiazole ( L1 ), 2-(4-( tert -butyl)pyridin-2-yl)benzo[ d ]thiazole ( L2 ), 2-(6-phenylpyridin-2-yl)benzo[ d ]thiazole ( L3 ), 2-(4-( tert -butyl)-6-phenylpyridin-2-yl)benzo[ d ]thiazole ( L4 ), 2,6-bis(benzo[ d ]thiazol-2-yl)pyridine ( L5 ), 2-(pyridin-2-yl)benzo[ d ]oxazole ( L6 ), or 2,2′-dibenzo[ d ]thiazole ( L7 ) are reported. The single crystal structures of [Ir(ppy) 2 ( L1 )][PF 6 ]·1.5CH 2 Cl 2 , [Ir(ppy) 2 ( L6 )][PF 6 ]·CH 2 Cl 2 , and [Ir(ppy) 2 ( L7 )][PF 6 ] have been determined. The new com…

research product

Electronic nature of the emitting triplet in SF 5 -substituted cationic Ir(III) complexes

Abstract A theoretical density functional theory study has been performed on a family of cationic iridium(III) complexes of the form [Ir(C^N)2(dtBubpy)]+ (dtBubpy = 4,4′-di-tert-butyl-2,2′-bipyridine), that incorporate 2-phenylpyridine (1, 2) and 1-phenylpyrazole (3, 4) cyclometallating C^N ligands functionalized with SF5 groups. The goal is to investigate the effect that the inclusion of SF5 groups in meta (1, 3) and para position (2, 4) with respect to the Ir–C bond has on the electronic nature of the emitting triplet state and the emission wavelength. The attachment of the electron-withdrawing groups induces the stabilization of the molecular orbitals localized on the C^N ligands and, in…

research product

[Ir(C^N)2(N^N)]+ emitters containing a naphthalene unit within a linker between the two cyclometallating ligands

The synthesis of four cyclometallated [Ir(C^N) 2 (N^N)][PF 6 ] compounds in which N^N is a substituted 2,2’- -bipyridine (bpy) ligand and the naphthyl-centred ligand 2,7-bis(2-(2-(4-(pyridin-2-yl)phenoxy)ethoxy) ethoxy)naphthalene provides the two cyclometallating C^N units is reported. The iridium( III ) complexes have been characterized by 1 H and 13 C NMR spectroscopies, mass spectrometry and elemental analysis, and their electrochemical and photophysical properties are described. Comparisons are made with a model [Ir(ppy) 2 (N^N)][PF 6 ] compound (Hppy = 2-phenylpyridine). The complexes containing the naphthyl-unit exhibit similar absorption spectra and excitation at 280 nm leads to an …

research product

Remote Modification of Bidentate Phosphane Ligands Controlling the Photonic Properties in Their Complexes: Enhanced Performance of [Cu(RN‐xantphos)(N ^ N)][PF 6 ] in Light‐Emitting Electrochemical Cells

A series of copper(I) complexes of the type [Cu(HN-xantphos)(N^N)][PF6] and [Cu(BnN-xantphos)(N^N)][PF6], in which N^N = bpy, Mebpy and Me2bpy, HN-xantphos = 4,6-bis(diphenylphosphanyl)-10H-phenoxazine and BnN-xantphos = 10-benzyl-4,6-bis(diphenylphosphanyl)-10H-phenoxazine is described. The single crystal structures of [Cu(HN-xantphos)(Mebpy)][PF6] and [Cu(BnN-xantphos)(Me2bpy)][PF6] confirm the presence of N^N and P^P chelating ligands with the copper(I) atoms in distorted coordination environments. Solution electrochemical and photophysical properties of the BnN-xantphos-containing compounds (for which the highest-occupied molecular orbital is located on the phenoxazine moiety) are repor…

research product

Regioisomerism in cationic sulfonyl-substituted [Ir(C^N)2(N^N)]+ complexes: its influence on photophysical properties and LEC performance

A series of regioisomeric cationic iridium complexes of the type [Ir(C^N)2(bpy)][PF6] (bpy = 2,2'-bipyridine) is reported. The complexes contain 2-phenylpyridine-based cyclometallating ligands with a methylsulfonyl group in either the 3-, 4- or 5-position of the phenyl ring. All the complexes have been fully characterized, including their crystal structures. In acetonitrile solution, all the compounds are green emitters with emission maxima between 493 and 517 nm. Whereas substitution meta to the Ir-C bond leads to vibrationally structured emission profiles and photoluminescence quantum yields of 74 and 77%, placing a sulfone substituent in a para position results in a broad, featureless em…

research product

The shiny side of copper: bringing copper(i) light-emitting electrochemical cells closer to application

Heteroleptic [Cu(P^P)(N^N)][PF6] complexes, where N^N is 5,50-dimethyl-2,20-bipyridine (5,50-Me2bpy), 4,5,6-trimethyl-2,20-bipyridine (4,5,6-Me3bpy), 6-(tert-butyl)-2,20-bipyridine (6-tBubpy) and 2-ethyl-1,10- phenanthroline (2-Etphen) and P^P is either bis(2-(diphenylphosphino)phenyl)ether (POP, PIN [oxydi(2,1- phenylene)]bis(diphenylphosphane)) or 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (xantphos, PIN (9,9-dimethyl-9H-xanthene-4,5-diyl)bis(diphenylphosphane)) have been synthesized and their NMR spectroscopic, mass spectrometric, structural, electrochemical and photophysical properties were investigated. The single-crystal structures of [Cu(POP)(5,50-Me2bpy)][PF6], [Cu(xantphos)(5,…

research product

Role of the bridge in photoinduced electron transfer in porphyrin-fullerene dyads.

The role of π-conjugated molecular bridges in through-space and through-bond electron transfer is studied by comparing two porphyrin-fullerene donor-acceptor (D-A) dyads. One dyad, ZnP-Ph-C60 (ZnP = zinc porphyrin), incorporates a phenyl bridge between D and A and behaves very similarly to analogous dyads studied previously. The second dyad, ZnP-EDOTV-C60, introduces an additional 3,4-ethylenedioxythienylvinylene (EDOTV) unit into the conjugated bridge, which increases the distance between D and A, but, at the same time, provides increased electronic communication between them. Two essential outcomes that result from the introduction of the EDOTV unit in the bridge are as follows: 1) faster…

research product

A computational study of some electric and magnetic properties of gaseous BF3 and BCl3

We present the results of an extended computational study of the electric and magnetic properties connected to Cotton-Mouton birefringences, on the trifluoro- and trichloroborides in the gas phase. The electric dipole polarizabilities, magnetizabilities, quadrupole moments, and higher-order hypersusceptibilities—expressed as quadratic and cubic frequency-dependent response functions—are computed within Hartree-Fock, density-functional, and coupled-cluster response theories employing singly and doubly augmented correlation-consistent basis sets and London orbitals in the magnetic property calculations. The results, which illustrate the capability of time-dependent density-functional theory f…

research product

Iridium(III) Complexes with Phenyl-tetrazoles as Cyclometalating Ligands

Ir(II) cationic complexes with cyclometalating tetrazolate ligands were prepared for the first time, following a two-step strategy based on (i) a silver-assisted cyclometalation reaction of a tetrazole derivative with IrCl3 affording a bis-cyclometalated solvato-complex P ([Ir(ptrz)(2)(CH3CN)(2)](+), Hptrz = 2-methyl-5-phenyl-2H-tetrazole); (ii) a substitution reaction with five neutral ancillary ligands to get [Ir(ptrz)(2)L](+), with L = 2,2'-bypiridine (1), 4,4'-di-tert-butyl-2,2'-bipyridine (2), 1,10-phenanthroline (3), and 2-(1-phenyl-1H-1,2,3-triazol-4-yl)pyridine (4), and [Ir(ptrz)(2)L-2](+), with L = tertbutyl isocyanide (5). X-ray crystal structures of P, 2, and 3 were solved. Elect…

research product

Colour tuning by the ring roundabout: [Ir(C^N)2(N^N)]+ emitters with sulfonyl-substituted cyclometallating ligands

A series of cationic bis-cyclometallated iridium(III) complexes [Ir(C^N)2(N^N)]+ is reported. Cyclometallating C^N ligands are based on 2-phenylpyridine with electron-withdrawing sulfone substituents in the phenyl ring: 2-(4-methylsulfonylphenyl)pyridine (H1) and 2-(3-methylsulfonylphenyl)pyridine (H2). 2-(1H-Pyrazol-1-yl)pyridine (pzpy) and 2-(3,5-dimethyl-1H-pyrazol-1-yl)pyridine (dmpzpy) are used as electron-rich ancillary N^N ligands. The complexes have been fully characterized and the single crystal structure of [Ir(2)2(dmpzpy)][PF6]·MeCN has been determined. Depending on the position of the methylsulfonyl group, the complexes are green or blue emitters with vibrationally structured em…

research product

Shine bright or live long: substituent effects in [Cu(N^N)(P^P)]+-based light-emitting electrochemical cells where N^N is a 6-substituted 2,2'-bipyridine

We report [Cu(P^P)(N^N)][PF6] complexes with P^P = bis(2-(diphenylphosphino)phenyl)ether (POP) or 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (xantphos) and N^N = 6-methyl-2,2′-bipyridine (Mebpy), 6-ethyl-2,2′-bipyridine (Etbpy), 6,6′-dimethyl-2,2′-bipyridine (Me2bpy) or 6-phenyl-2,2′-bipyridine (Phbpy). The crystal structures of [Cu(POP)(Phbpy)][PF6]·Et2O, [Cu(POP)(Etbpy)][PF6]·Et2O, [Cu(xantphos)(Me2bpy)][PF6], [Cu(xantphos)(Mebpy)][PF6]·CH2Cl2·0.4Et2O, [Cu(xantphos)(Etbpy)][PF6]·CH2Cl2·1.5H2O and [Cu(xantphos)(Phbpy)][PF6] are described; each copper(I) centre is distorted tetrahedral. In the crystallographically determined structures, the N^N domain in [Cu(xantphos)(Phbpy)]+ and [Cu(…

research product

A deep-blue emitting charged bis-cyclometallated iridium(iii) complex for light-emitting electrochemical cells

We report here a new cationic bis-cyclometallated iridium(III) complex, 1, with deep-blue emission at 440 nm and its use in Light-emitting Electrochemical Cells (LECs). The design is based on the 2′,6′-difluoro-2,3′-bipyridine skeleton as the cyclometallating ligand and a bis-imidazolium carbene-type ancillary ligand. Furthermore, bulky tert-butyl substituents are used to limit the intermolecular interactions. LECs have been driven both at constant voltage (6 V) and constant current (2.5 mA cm−2). The performances are significantly improved with the latter method, resulting overall in one of the best reported greenish-blue LECs having fast response (17 s), light intensity over 100 cd m−2 an…

research product

A water molecule in the interior of a 1H-pyrazole Cu2+ metallocage

Water has a great tendency to associate through hydrogen bonding with water molecules or other hydrogen bond donor or acceptor groups. Here the case of a water molecule encapsulated in the interior of a metallocage receptor is presented. The association of four copper(II) ions and two aza-macrocyclic receptors in which two 1H-pyrazole units are connected by cadaverine diamines leads to the inclusion of a water molecule into the cage, as proved by X-ray analysis and infrared spectroscopy. The included water molecule shows no hydrogen bonding with any component of the cage presenting only a weak hydrogen bond with an oxygen atom of a perchlorate counter-anion. The IR stretching vibrations pre…

research product

Emission energy of azole-based ionic iridium(III) complexes: a theoretical study.

A theoretical density functional theory study has been performed on different families of cationic cyclometallated Ir(III) complexes with the general formula [Ir(C^N)2(N^N)](+) and azole-based ligands. The goal was to investigate the effect that the number and position of the nitrogen atoms of the azole ring have on the electronic structure and emission wavelength of the complex. The increase in the number of nitrogen atoms changes the relative energy of the HOMO and LUMO levels and leads to a gradual shift in the emission wavelength that can be larger than 100 nm. The direction of the shift however depends on the ligand in which the azole ring is introduced. The emission shifts to bluer wa…

research product

Exploring the effect of the cyclometallating ligand in 2-(pyridine-2-yl)benzo[d]thiazole-containing iridium(III) complexes for stable light-emitting electrochemical cells

The preparation and characterization of a series of iridium(III) ionic transition-metal complexes for application in light-emitting electrochemical cells (LECs) are reported. The complexes are of the type [Ir(C^N)2(N^N)][PF6] in which C^N is one of the cyclometallating ligands 2-(3-(tert-butyl)phenyl)pyridine (tppy), 2-phenylbenzo[d]thiazole (pbtz), 1-phenyl-1H-pyrazole (ppz) and 1-phenylisoquninoline (piq), and N^N is 2-(pyridine-2-yl)benzo[d]thiazole (btzpy). The variation in the C^N ligands allows the HOMO energy level to be tuned, leading to HOMO–LUMO gaps in the range 2.76–3.01 eV and values of Eox1/2 of 0.81–1.11 V. In solution, the complexes are orange to deep-red emitters (λmax in t…

research product

Remote modification of bidentate phosphane ligands controlling the photonic properties in their complexes: Enhanced performance of [Cu(RN-xantphos)(N^N)][PF6] in light-emitting electrochemical cells

A series of copper(I) complexes of the type [Cu(HN-xantphos)(N^N)][PF6] and [Cu(BnN-xantphos)(N^N)][PF6], in which N^N = bpy, Mebpy, and Me2bpy, HN-xantphos = 4,6-bis(diphenylphosphanyl)-10H-phenoxazine and BnNxantphos = 10-benzyl-4,6-bis(diphenylphosphanyl)-10H-phenoxazine is described. The single crystal structures of [Cu(HN-xantphos)(Mebpy)][PF6] and [Cu(BnN-xantphos)(Me2bpy)][PF6] confirm the presence of N^N and P^P chelating ligands with the copper(I) atoms in distorted coordination environments. Solution electrochemical and photophysical properties of the BnNxantphos- containing compounds (for which the highest-occupied molecular orbital is located on the phenoxazine moiety) are repor…

research product

Size-consistent ab initio calculation of the electric quadrupole moment of Cl2

Abstract The molecular electric quadrupole moment ( Θ ) of Cl 2 has been calculated using SDCI, and (SC) 2 -SDCI wave functions as well as CCSD, CCSD(T), and CC3 methods. All these correlation methods are single reference. All of them, but SDCI, are free of the size-extensivity error. The variation of Θ from the separated atoms to the equilibrium region is reported. The present results leads to an estimated value of 2.3520 a.u. (10.55 × 10 −40 Cm 2 ) corresponding to a CC(3) calculation at the CBS approach and including the ro-vibrational and thermal averaging corrections. This value is compatible with two experimental values and points to one of them as slightly more reliable.

research product

Phosphane tuning in heteroleptic [Cu(N^N)(P^P)]+ complexes for light-emitting electrochemical cells

The synthesis and characterization of five [Cu(P^P)(N^N)][PF 6 ] complexes in which P^P = 2,7-bis( tert -butyl)-4,5-bis(diphenylphosphino)-9,9-dimethylxanthene ( t Bu 2 xantphos) or the chiral 4,5-bis(mesitylphenylphosphino)-9,9-dimethylxanthene (xantphosMes 2 ) and N^N = 2,2'-bipyridine (bpy), 6-methyl-2,2'-bipyridine (6-Mebpy) or 6,6'-dimethyl-2,2'-bipyridine (6,6'-Me 2 bpy) are reported. Single crystal structures of four of the compounds confirm that the copper(I) centre is in a distorted tetrahedral environment. In [Cu(xantphosMes 2 )(6-Mebpy)][PF 6 ], the 6-Mebpy unit is disordered over two equally populated orientations and this disorder parallels a combination of two dynamic processe…

research product

Luminescent copper(i) complexes with bisphosphane and halogen-substituted 2,2′-bipyridine ligands

Heteroleptic [Cu(P^P)(N^N)][PF6] complexes, where N^N is a halo-substituted 2,2'-bipyridine (bpy) and P^P is either bis(2-(diphenylphosphino)phenyl)ether (POP) or 4,5-bis(diphenylphosphino)-9,9- dimethylxanthene (xantphos) have been synthesized and investigated. To stabilize the tetrahedral geometry of the copper(I) complexes, the steric demands of the bpy ligands have been increased by introducing 6- or 6,6'-halo-substituents in 6,6'-dichloro-2,2'-bipyridine (6,6'-Cl2bpy), 6-bromo-2,2'- bipyridine (6-Brbpy) and 6,6'-dibromo-2,2'-bipyridine (6,6'-Br2bpy). The solid-state structures of [Cu(POP)(6,6'-Cl2bpy)][PF6], [Cu(xantphos)(6,6'-Cl2bpy)][PF6].CH2Cl2, [Cu(POP)(6-Brbpy)][PF6] and [Cu(xantp…

research product

Full configuration interaction calculation of Be3.

The full configuration interaction (FCI) study of the ground state of the neutral beryllium trimer has been performed using an atomic natural orbitals [3s2p1d] basis set. Both triangular and linear structures have been considered for the Be(3) cluster. The optimal geometry for the equilateral triangle has been calculated. The potential energy cut sections along the normal a(1)(') mode and one of the components of the e(') mode have then been studied. The FCI symmetric atomization potential of the linear cluster is also reported. It shows a secondary van der Waals minimum at a long bond distance. All singular points in the potential energy curves are characterized. Other properties, like dis…

research product

Molecular electric quadrupole moments calculated with matrix dressed SDCI

Abstract We have calculated the molecular electric quadrupole moment (MEQM) for the set of molecules N 2 , C 2 H 2 , CO, CO 2 , CS 2 , HF, and BH. We have used SR-SDCI and (SC) 2 -SR-SDCI methods and we have compared our results with high-level theoretical ones, including FCI values for HF and BH, and with experimental values. The calculated MEQM provides a test of the effect that the energy converged (SC) 2 dressing method brings to the SDCI wavefunctions. The results suggest that the (SC) 2 -SR-SDCI method can be a cost-effective and quite accurate method for the calculation of post-SCF effects on electric quadrupole moments.

research product

Bis-Sulfone- and Bis-Sulfoxide-Spirobifluorenes: Polar Acceptor Hosts with Tunable Solubilities for Blue-Phosphorescent Light-Emitting Devices

Bis-sulfone- and bis-sulfoxide-spirobifluorenes are a promising class of high-triplet-energy electron-acceptor hosts for blue phosphorescent light-emitting devices. The molecular design and synthetic route are simple and facilitate tailoring of the solubilities of the host materials without lowering the high-energy triplet state. The syntheses and characterization (including single-crystal structures) of four electron-accepting hosts are reported; the trend in their reduction potentials is consistent with the electron-withdrawing nature of the sulfone or sulfoxide substituents. Emission maxima of 421–432 nm overlap with the MLCT absorption of the sky-blue emitter bis(4,6-difluorophenyl-pyri…

research product

CF3 Substitution of [Cu(P^P)(bpy)][PF6 ] Complexes: Effects on Photophysical Properties and Light-Emitting Electrochemical Cell Performance

Herein, [Cu(P^P)(N^N)][PF6 ] complexes (P^P=bis[2-(diphenylphosphino)phenyl]ether (POP) or 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (xantphos); N^N=CF3 -substituted 2,2'-bipyridines (6,6'-(CF3 )2 bpy, 6-CF3 bpy, 5,5'-(CF3 )2 bpy, 4,4'-(CF3 )2 bpy, 6,6'-Me2 -4,4'-(CF3 )2 bpy)) are reported. The effects of CF3 substitution on their structure as well as their electrochemical and photophysical properties are also presented. The HOMO-LUMO gap was tuned by the N^N ligand; the largest redshift in the metal-to-ligand charge transfer (MLCT) band was for [Cu(P^P){5,5'-(CF3 )2 bpy}][PF6 ]. In solution, the compounds are weak yellow to red emitters. The emission properties depend on the substitu…

research product

[Cu(P^P)(N^N)][PF6] compounds with bis(phosphane) and 6-alkoxy, 6-alkylthio, 6-phenyloxy and 6-phenylthio-substituted 2,2'-bipyridine ligands for light-emitting electrochemical cells

We report a series of [Cu(P^P)(N^N)][PF6] complexes with P^P = bis(2-(diphenylphosphino)phenyl)ether (POP) or 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (xantphos) and N^N = 6-methoxy-2,2′-bipyridine (MeObpy), 6-ethoxy-2,2′-bipyridine (EtObpy), 6-phenyloxy-2,2′-bipyridine (PhObpy), 6-methylthio-2,2′-bipyridine (MeSbpy), 6-ethylthio-2,2′-bipyridine (EtSbpy) and 6-phenylthio-2,2′-bipyridine (PhSbpy). The single crystal structures of all twelve compounds have been determined and confirm chelating modes for each N^N and P^P ligand, and a distorted tetrahedral geometry for copper(I). For the xantphos-containing complexes, the asymmetrical bpy ligand is arranged with the 6-substituent lying …

research product

Full configuration interaction calculation of singlet excited states of Be3

The full configuration interaction (FCI) study of the singlets vertical spectrum of the neutral beryllium trimer has been performed using atomic natural orbitals [3s2p1d] basis set. The FCI triangular equilibrium structure of the ground state has been used to calculate the FCI vertical excitation energies up to 4.8 eV. The FCI vertical ionization potential for the same geometry and basis set amounts to 7.6292 eV. The FCI dipole and quadrupole transition moments from the ground state are reported as well. The FCI electric quadrupole moment of the X (3)A(1) (') ground state has been also calculated with the same basis set (Theta(zz)=-2.6461 a.u., Theta(xx)=Theta(yy)=-1/2Theta(zz)). Twelve of …

research product

Multistate active spaces from local CAS-SCF molecular orbitals: the photodissociation of HFCO as an example.

A recently developed algorithm to generate localized molecular orbitals (LMO) is applied to the study of excited states along a photodissociation process. The LMOs allow for the selection of a consistent complete active space (CAS) for the simultaneous description of all the electronic states involved in a multistate process on the basis of simple chemical criteria. The local nature of the orbitals is used to label them in a unique way that does not depend on the molecular geometry. The selection of the electronic configurations of interest for the set of target states on only the basis of the dominant excitations required by the simplest configuration interaction (CI) descriptions for both…

research product

Front Cover: CF3 Substitution of [Cu(P^P)(bpy)][PF6 ] Complexes: Effects on Photophysical Properties and Light-Emitting Electrochemical Cell Performance (ChemPlusChem 4/2018)

research product

Highly Stable and Efficient Light-Emitting Electrochemical Cells Based on Cationic Iridium Complexes Bearing Arylazole Ancillary Ligands.

A series of bis-cyclometalated iridium(III) complexes of general formula [Ir(ppy)2(N∧N)][PF6] (ppy− = 2-phenylpyridinate; N∧N = 2-(1H-imidazol-2-yl)pyridine (1), 2-(2-pyridyl)benzimidazole (2), 1-methyl-2-pyridin-2-yl- 1H-benzimidazole (3), 2-(4′-thiazolyl)benzimidazole (4), 1- methyl-2-(4′-thiazolyl)benzimidazole (5)) is reported, and their use as electroluminescent materials in light-emitting electrochemical cell (LEC) devices is investigated. [2][PF6] and [3][PF6] are orange emitters with intense unstructured emission around 590 nm in acetonitrile solution. [1][PF6], [4][PF6], and [5][PF6] are green weak emitters with structured emission bands peaking around 500 nm. The different photoph…

research product

Azole-containing cationic bis-cyclometallated iridium(iii) isocyanide complexes: a theoretical insight into the emission energy and emission efficiency

Using a density functional theory approach, we explore the emission properties of a family of bis-cyclometallated cationic iridium(iii) complexes of general formula [Ir(C^N)2(CN-tert-Bu)2]+ that have tert-butyl isocyanides as neutral auxiliary ligands. Taking the [Ir(ppy)2(CN-tert-Bu)2]+ complex (Hppy = 2-phenylpyridine) as a reference, the effect of replacing the pyridine ring in the cyclometallating ppy ligand by a five-membered azole ring has been examined. To this end, two series of complexes differing by the nature of the atom (either nitrogen or carbon) linking the azole to the phenyl ring of the cyclometallating ligand have been designed. Each series is composed of three molecules ha…

research product

CCDC 1562407: Experimental Crystal Structure Determination

Related Article: Murat Alkan-Zambada, Sarah Keller, Laura Martínez-Sarti, Alessandro Prescimone, José M. Junquera-Hernández, Edwin C. Constable, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2018|J.Mater.Chem.C|6|8460|doi:10.1039/C8TC02882F

research product

CCDC 1562410: Experimental Crystal Structure Determination

Related Article: Murat Alkan-Zambada, Sarah Keller, Laura Martínez-Sarti, Alessandro Prescimone, José M. Junquera-Hernández, Edwin C. Constable, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2018|J.Mater.Chem.C|6|8460|doi:10.1039/C8TC02882F

research product

CCDC 987700: Experimental Crystal Structure Determination

Related Article: Filippo Monti, Andrea Baschieri, Isacco Gualandi, Juan J. Serrano-Pérez, José M. Junquera-Hernández, Domenica Tonelli, Andrea Mazzanti, Sara Muzzioli, Stefano Stagni, Cristina Roldan-Carmona, Antonio Pertegás, Henk J. Bolink, Enrique Ortí, Letizia Sambri, and Nicola Armaroli|2014|Inorg.Chem.|53|7709|doi:10.1021/ic500999k

research product

CCDC 1422375: Experimental Crystal Structure Determination

Related Article: Sarah Keller, Antonio Pertegás, Giulia Longo, Laura Martínez, Jesús Cerdá, José M. Junquera-Hernández, Alessandro Prescimone, Edwin C. Constable, Catherine E. Housecroft, Enrique Ortí, Henk J. Bolink|2016|J.Mater.Chem.C|4|3857|doi:10.1039/C5TC03725E

research product

CCDC 1515402: Experimental Crystal Structure Determination

Related Article: Cristina Momblona, Cathrin D. Ertl, Antonio Pertegás, José M. Junquera-Hernández, Maria-Grazia La-Placa, Alessandro Prescimone, Enrique Ortí, Catherine E. Housecroft, Edwin C. Constable, and Henk J. Bolink|2017|J.Am.Chem.Soc.|139|3237|doi:10.1021/jacs.6b13311

research product

CCDC 1584756: Experimental Crystal Structure Determination

Related Article: Sarah Keller, Alessandro Prescimone, Henk Bolink, Michele Sessolo, Giulia Longo, Laura Martínez-Sarti, José M. Junquera-Hernández, Edwin C. Constable, Enrique Ortí, Catherine E. Housecroft|2018|Dalton Trans.|47|14263|doi:10.1039/C8DT01338A

research product

CCDC 1584755: Experimental Crystal Structure Determination

Related Article: Sarah Keller, Alessandro Prescimone, Henk Bolink, Michele Sessolo, Giulia Longo, Laura Martínez-Sarti, José M. Junquera-Hernández, Edwin C. Constable, Enrique Ortí, Catherine E. Housecroft|2018|Dalton Trans.|47|14263|doi:10.1039/C8DT01338A

research product

CCDC 1422372: Experimental Crystal Structure Determination

Related Article: Sarah Keller, Antonio Pertegás, Giulia Longo, Laura Martínez, Jesús Cerdá, José M. Junquera-Hernández, Alessandro Prescimone, Edwin C. Constable, Catherine E. Housecroft, Enrique Ortí, Henk J. Bolink|2016|J.Mater.Chem.C|4|3857|doi:10.1039/C5TC03725E

research product

CCDC 1844060: Experimental Crystal Structure Determination

Related Article: Fabian Brunner, Azin Babaei, Antonio Pertegás, José M. Junquera-Hernández, Alessandro Prescimone, Edwin C. Constable, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2019|Dalton Trans.|48|446|doi:10.1039/C8DT03827A

research product

CCDC 1562409: Experimental Crystal Structure Determination

Related Article: Murat Alkan-Zambada, Sarah Keller, Laura Martínez-Sarti, Alessandro Prescimone, José M. Junquera-Hernández, Edwin C. Constable, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2018|J.Mater.Chem.C|6|8460|doi:10.1039/C8TC02882F

research product

CCDC 1978436: Experimental Crystal Structure Determination

Related Article: Sarah Keller, Alessandro Prescimone, Maria-Grazia La Placa, José M. Junquera-Hernández, Henk J. Bolink, Edwin C. Constable, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2020|RSC Advances|10|22631|doi:10.1039/D0RA03824E

research product

CCDC 972526: Experimental Crystal Structure Determination

Related Article: Gabriel E. Schneider, Antonio Pertegás, Edwin C. Constable, Catherine E. Housecroft, Nik Hostettler, Collin D. Morris, Jennifer A. Zampese, Henk J. Bolink, José M. Junquera-Hernández, Enrique Ortí, Michele Sessolo|2014|J.Mater.Chem.C|2|7047|doi:10.1039/C4TC01171F

research product

CCDC 1535142: Experimental Crystal Structure Determination

Related Article: Sarah Keller, Alessandro Prescimone, Henk Bolink, Michele Sessolo, Giulia Longo, Laura Martínez-Sarti, José M. Junquera-Hernández, Edwin C. Constable, Enrique Ortí, Catherine E. Housecroft|2018|Dalton Trans.|47|14263|doi:10.1039/C8DT01338A

research product

CCDC 1844063: Experimental Crystal Structure Determination

Related Article: Fabian Brunner, Azin Babaei, Antonio Pertegás, José M. Junquera-Hernández, Alessandro Prescimone, Edwin C. Constable, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2019|Dalton Trans.|48|446|doi:10.1039/C8DT03827A

research product

CCDC 1562458: Experimental Crystal Structure Determination

Related Article: Murat Alkan-Zambada, Sarah Keller, Laura Martínez-Sarti, Alessandro Prescimone, José M. Junquera-Hernández, Edwin C. Constable, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2018|J.Mater.Chem.C|6|8460|doi:10.1039/C8TC02882F

research product

CCDC 949190: Experimental Crystal Structure Determination

Related Article: Andreas M. Bünzli, Henk J. Bolink, Edwin C. Constable, Catherine E. Housecroft, José M. Junquera-Hernández, Markus Neuburger, Enrique Ortí, Antonio Pertegás, Juan J. Serrano-Pérez, Daniel Tordera, Jennifer A. Zampese|2014|Dalton Trans.|43|738|doi:10.1039/C3DT52622D

research product

CCDC 910854: Experimental Crystal Structure Determination

Related Article: Daniel Tordera, Andreas M. Bünzli, Antonio Pertegás, José M. Junquera-Hernández, Edwin C. Constable, Jennifer A. Zampese, Catherine E. Housecroft, Enrique Ortí, Henk J. Bolink|2013|Chem.-Eur.J.|19|8597|doi:10.1002/chem.201300457

research product

CCDC 1583875: Experimental Crystal Structure Determination

Related Article: Sarah Keller, Alessandro Prescimone, Henk Bolink, Michele Sessolo, Giulia Longo, Laura Martínez-Sarti, José M. Junquera-Hernández, Edwin C. Constable, Enrique Ortí, Catherine E. Housecroft|2018|Dalton Trans.|47|14263|doi:10.1039/C8DT01338A

research product

CCDC 1978440: Experimental Crystal Structure Determination

Related Article: Sarah Keller, Alessandro Prescimone, Maria-Grazia La Placa, José M. Junquera-Hernández, Henk J. Bolink, Edwin C. Constable, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2020|RSC Advances|10|22631|doi:10.1039/D0RA03824E

research product

CCDC 1519073: Experimental Crystal Structure Determination

Related Article: Marta Martínez-Alonso, Jesús Cerdá, Cristina Momblona, Antonio Pertegás, José M. Junquera-Hernández, Aránzazu Heras, Ana M. Rodríguez, Gustavo Espino, Henk Bolink, and Enrique Ortí|2017|Inorg.Chem.|56|10298|doi:10.1021/acs.inorgchem.7b01167

research product

CCDC 1978441: Experimental Crystal Structure Determination

Related Article: Sarah Keller, Alessandro Prescimone, Maria-Grazia La Placa, José M. Junquera-Hernández, Henk J. Bolink, Edwin C. Constable, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2020|RSC Advances|10|22631|doi:10.1039/D0RA03824E

research product

CCDC 1584757: Experimental Crystal Structure Determination

Related Article: Sarah Keller, Alessandro Prescimone, Henk Bolink, Michele Sessolo, Giulia Longo, Laura Martínez-Sarti, José M. Junquera-Hernández, Edwin C. Constable, Enrique Ortí, Catherine E. Housecroft|2018|Dalton Trans.|47|14263|doi:10.1039/C8DT01338A

research product

CCDC 1562460: Experimental Crystal Structure Determination

Related Article: Murat Alkan-Zambada, Sarah Keller, Laura Martínez-Sarti, Alessandro Prescimone, José M. Junquera-Hernández, Edwin C. Constable, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2018|J.Mater.Chem.C|6|8460|doi:10.1039/C8TC02882F

research product

CCDC 1562411: Experimental Crystal Structure Determination

Related Article: Murat Alkan-Zambada, Sarah Keller, Laura Martínez-Sarti, Alessandro Prescimone, José M. Junquera-Hernández, Edwin C. Constable, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2018|J.Mater.Chem.C|6|8460|doi:10.1039/C8TC02882F

research product

CCDC 1429456: Experimental Crystal Structure Determination

Related Article: Sarah Keller, Antonio Pertegás, Giulia Longo, Laura Martínez, Jesús Cerdá, José M. Junquera-Hernández, Alessandro Prescimone, Edwin C. Constable, Catherine E. Housecroft, Enrique Ortí, Henk J. Bolink|2016|J.Mater.Chem.C|4|3857|doi:10.1039/C5TC03725E

research product

CCDC 1519074: Experimental Crystal Structure Determination

Related Article: Marta Martínez-Alonso, Jesús Cerdá, Cristina Momblona, Antonio Pertegás, José M. Junquera-Hernández, Aránzazu Heras, Ana M. Rodríguez, Gustavo Espino, Henk Bolink, and Enrique Ortí|2017|Inorg.Chem.|56|10298|doi:10.1021/acs.inorgchem.7b01167

research product

CCDC 1535141: Experimental Crystal Structure Determination

Related Article: Sarah Keller, Alessandro Prescimone, Henk Bolink, Michele Sessolo, Giulia Longo, Laura Martínez-Sarti, José M. Junquera-Hernández, Edwin C. Constable, Enrique Ortí, Catherine E. Housecroft|2018|Dalton Trans.|47|14263|doi:10.1039/C8DT01338A

research product

CCDC 1584754: Experimental Crystal Structure Determination

Related Article: Sarah Keller, Alessandro Prescimone, Henk Bolink, Michele Sessolo, Giulia Longo, Laura Martínez-Sarti, José M. Junquera-Hernández, Edwin C. Constable, Enrique Ortí, Catherine E. Housecroft|2018|Dalton Trans.|47|14263|doi:10.1039/C8DT01338A

research product

CCDC 1562408: Experimental Crystal Structure Determination

Related Article: Murat Alkan-Zambada, Sarah Keller, Laura Martínez-Sarti, Alessandro Prescimone, José M. Junquera-Hernández, Edwin C. Constable, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2018|J.Mater.Chem.C|6|8460|doi:10.1039/C8TC02882F

research product

CCDC 974892: Experimental Crystal Structure Determination

Related Article: Cathrin D. Ertl, Henk J. Bolink, Catherine E. Housecroft, Edwin C. Constable, Enrique Ortí, José M. Junquera-Hernández, Markus Neuburger, Nail M. Shavaleev, Mohammad Khaja Nazeeruddin and David Vonlanthen|2016|Eur.J.Org.Chem.|2016|2037|doi:10.1002/ejoc.201600247

research product

CCDC 1515401: Experimental Crystal Structure Determination

Related Article: Cristina Momblona, Cathrin D. Ertl, Antonio Pertegás, José M. Junquera-Hernández, Maria-Grazia La-Placa, Alessandro Prescimone, Enrique Ortí, Catherine E. Housecroft, Edwin C. Constable, and Henk J. Bolink|2017|J.Am.Chem.Soc.|139|3237|doi:10.1021/jacs.6b13311

research product

CCDC 1422374: Experimental Crystal Structure Determination

Related Article: Sarah Keller, Antonio Pertegás, Giulia Longo, Laura Martínez, Jesús Cerdá, José M. Junquera-Hernández, Alessandro Prescimone, Edwin C. Constable, Catherine E. Housecroft, Enrique Ortí, Henk J. Bolink|2016|J.Mater.Chem.C|4|3857|doi:10.1039/C5TC03725E

research product

CCDC 1421913: Experimental Crystal Structure Determination

Related Article: Cathrin D. Ertl, Lidón Gil-Escrig, Jesús Cerdá, Antonio Pertegás, Henk J. Bolink, José M. Junquera-Hernández, Alessandro Prescimone, Markus Neuburger, Edwin C. Constable, Enrique Ortí, Catherine E. Housecroft|2016|Dalton Trans.|45|11668|doi:10.1039/C6DT01325B

research product

CCDC 1562448: Experimental Crystal Structure Determination

Related Article: Murat Alkan-Zambada, Sarah Keller, Laura Martínez-Sarti, Alessandro Prescimone, José M. Junquera-Hernández, Edwin C. Constable, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2018|J.Mater.Chem.C|6|8460|doi:10.1039/C8TC02882F

research product

CCDC 1421914: Experimental Crystal Structure Determination

Related Article: Cathrin D. Ertl, Lidón Gil-Escrig, Jesús Cerdá, Antonio Pertegás, Henk J. Bolink, José M. Junquera-Hernández, Alessandro Prescimone, Markus Neuburger, Edwin C. Constable, Enrique Ortí, Catherine E. Housecroft|2016|Dalton Trans.|45|11668|doi:10.1039/C6DT01325B

research product

CCDC 949192: Experimental Crystal Structure Determination

Related Article: Andreas M. Bünzli, Henk J. Bolink, Edwin C. Constable, Catherine E. Housecroft, José M. Junquera-Hernández, Markus Neuburger, Enrique Ortí, Antonio Pertegás, Juan J. Serrano-Pérez, Daniel Tordera, Jennifer A. Zampese|2014|Dalton Trans.|43|738|doi:10.1039/C3DT52622D

research product

CCDC 1562457: Experimental Crystal Structure Determination

Related Article: Murat Alkan-Zambada, Sarah Keller, Laura Martínez-Sarti, Alessandro Prescimone, José M. Junquera-Hernández, Edwin C. Constable, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2018|J.Mater.Chem.C|6|8460|doi:10.1039/C8TC02882F

research product

CCDC 1055780: Experimental Crystal Structure Determination

Related Article: Cathrin D. Ertl, Jesús Cerdá, José M. Junquera-Hernández, Antonio Pertegás, Henk J. Bolink, Edwin C. Constable, Markus Neuburger, Enrique Ortí, Catherine E. Housecroft|2015|RSC Advances|5|42815|doi:10.1039/C5RA07940C

research product

CCDC 1844062: Experimental Crystal Structure Determination

Related Article: Fabian Brunner, Azin Babaei, Antonio Pertegás, José M. Junquera-Hernández, Alessandro Prescimone, Edwin C. Constable, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2019|Dalton Trans.|48|446|doi:10.1039/C8DT03827A

research product

CCDC 1562453: Experimental Crystal Structure Determination

Related Article: Murat Alkan-Zambada, Sarah Keller, Laura Martínez-Sarti, Alessandro Prescimone, José M. Junquera-Hernández, Edwin C. Constable, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2018|J.Mater.Chem.C|6|8460|doi:10.1039/C8TC02882F

research product

CCDC 1421915: Experimental Crystal Structure Determination

Related Article: Cathrin D. Ertl, Lidón Gil-Escrig, Jesús Cerdá, Antonio Pertegás, Henk J. Bolink, José M. Junquera-Hernández, Alessandro Prescimone, Markus Neuburger, Edwin C. Constable, Enrique Ortí, Catherine E. Housecroft|2016|Dalton Trans.|45|11668|doi:10.1039/C6DT01325B

research product

CCDC 949191: Experimental Crystal Structure Determination

Related Article: Andreas M. Bünzli, Henk J. Bolink, Edwin C. Constable, Catherine E. Housecroft, José M. Junquera-Hernández, Markus Neuburger, Enrique Ortí, Antonio Pertegás, Juan J. Serrano-Pérez, Daniel Tordera, Jennifer A. Zampese|2014|Dalton Trans.|43|738|doi:10.1039/C3DT52622D

research product

CCDC 987698: Experimental Crystal Structure Determination

Related Article: Filippo Monti, Andrea Baschieri, Isacco Gualandi, Juan J. Serrano-Pérez, José M. Junquera-Hernández, Domenica Tonelli, Andrea Mazzanti, Sara Muzzioli, Stefano Stagni, Cristina Roldan-Carmona, Antonio Pertegás, Henk J. Bolink, Enrique Ortí, Letizia Sambri, and Nicola Armaroli|2014|Inorg.Chem.|53|7709|doi:10.1021/ic500999k

research product

CCDC 1978437: Experimental Crystal Structure Determination

Related Article: Sarah Keller, Alessandro Prescimone, Maria-Grazia La Placa, José M. Junquera-Hernández, Henk J. Bolink, Edwin C. Constable, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2020|RSC Advances|10|22631|doi:10.1039/D0RA03824E

research product

CCDC 1844061: Experimental Crystal Structure Determination

Related Article: Fabian Brunner, Azin Babaei, Antonio Pertegás, José M. Junquera-Hernández, Alessandro Prescimone, Edwin C. Constable, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2019|Dalton Trans.|48|446|doi:10.1039/C8DT03827A

research product

CCDC 987699: Experimental Crystal Structure Determination

Related Article: Filippo Monti, Andrea Baschieri, Isacco Gualandi, Juan J. Serrano-Pérez, José M. Junquera-Hernández, Domenica Tonelli, Andrea Mazzanti, Sara Muzzioli, Stefano Stagni, Cristina Roldan-Carmona, Antonio Pertegás, Henk J. Bolink, Enrique Ortí, Letizia Sambri, and Nicola Armaroli|2014|Inorg.Chem.|53|7709|doi:10.1021/ic500999k

research product

CCDC 1562412: Experimental Crystal Structure Determination

Related Article: Murat Alkan-Zambada, Sarah Keller, Laura Martínez-Sarti, Alessandro Prescimone, José M. Junquera-Hernández, Edwin C. Constable, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2018|J.Mater.Chem.C|6|8460|doi:10.1039/C8TC02882F

research product

CCDC 1535144: Experimental Crystal Structure Determination

Related Article: Sarah Keller, Alessandro Prescimone, Henk Bolink, Michele Sessolo, Giulia Longo, Laura Martínez-Sarti, José M. Junquera-Hernández, Edwin C. Constable, Enrique Ortí, Catherine E. Housecroft|2018|Dalton Trans.|47|14263|doi:10.1039/C8DT01338A

research product

CCDC 1860879: Experimental Crystal Structure Determination

Related Article: Fabian Brunner, Azin Babaei, Antonio Pertegás, José M. Junquera-Hernández, Alessandro Prescimone, Edwin C. Constable, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2019|Dalton Trans.|48|446|doi:10.1039/C8DT03827A

research product

CCDC 1978438: Experimental Crystal Structure Determination

Related Article: Sarah Keller, Alessandro Prescimone, Maria-Grazia La Placa, José M. Junquera-Hernández, Henk J. Bolink, Edwin C. Constable, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2020|RSC Advances|10|22631|doi:10.1039/D0RA03824E

research product

CCDC 1422373: Experimental Crystal Structure Determination

Related Article: Sarah Keller, Antonio Pertegás, Giulia Longo, Laura Martínez, Jesús Cerdá, José M. Junquera-Hernández, Alessandro Prescimone, Edwin C. Constable, Catherine E. Housecroft, Enrique Ortí, Henk J. Bolink|2016|J.Mater.Chem.C|4|3857|doi:10.1039/C5TC03725E

research product

CCDC 1584752: Experimental Crystal Structure Determination

Related Article: Sarah Keller, Alessandro Prescimone, Henk Bolink, Michele Sessolo, Giulia Longo, Laura Martínez-Sarti, José M. Junquera-Hernández, Edwin C. Constable, Enrique Ortí, Catherine E. Housecroft|2018|Dalton Trans.|47|14263|doi:10.1039/C8DT01338A

research product

CCDC 1062206: Experimental Crystal Structure Determination

Related Article: Cristina Momblona, Cathrin D. Ertl, Antonio Pertegás, José M. Junquera-Hernández, Maria-Grazia La-Placa, Alessandro Prescimone, Enrique Ortí, Catherine E. Housecroft, Edwin C. Constable, and Henk J. Bolink|2017|J.Am.Chem.Soc.|139|3237|doi:10.1021/jacs.6b13311

research product

CCDC 1562449: Experimental Crystal Structure Determination

Related Article: Murat Alkan-Zambada, Sarah Keller, Laura Martínez-Sarti, Alessandro Prescimone, José M. Junquera-Hernández, Edwin C. Constable, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2018|J.Mater.Chem.C|6|8460|doi:10.1039/C8TC02882F

research product

CCDC 993287: Experimental Crystal Structure Determination

Related Article: Cathrin D. Ertl, Henk J. Bolink, Catherine E. Housecroft, Edwin C. Constable, Enrique Ortí, José M. Junquera-Hernández, Markus Neuburger, Nail M. Shavaleev, Mohammad Khaja Nazeeruddin and David Vonlanthen|2016|Eur.J.Org.Chem.|2016|2037|doi:10.1002/ejoc.201600247

research product

CCDC 1978442: Experimental Crystal Structure Determination

Related Article: Sarah Keller, Alessandro Prescimone, Maria-Grazia La Placa, José M. Junquera-Hernández, Henk J. Bolink, Edwin C. Constable, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2020|RSC Advances|10|22631|doi:10.1039/D0RA03824E

research product

CCDC 974893: Experimental Crystal Structure Determination

Related Article: Cathrin D. Ertl, Henk J. Bolink, Catherine E. Housecroft, Edwin C. Constable, Enrique Ortí, José M. Junquera-Hernández, Markus Neuburger, Nail M. Shavaleev, Mohammad Khaja Nazeeruddin and David Vonlanthen|2016|Eur.J.Org.Chem.|2016|2037|doi:10.1002/ejoc.201600247

research product

CCDC 1584753: Experimental Crystal Structure Determination

Related Article: Sarah Keller, Alessandro Prescimone, Henk Bolink, Michele Sessolo, Giulia Longo, Laura Martínez-Sarti, José M. Junquera-Hernández, Edwin C. Constable, Enrique Ortí, Catherine E. Housecroft|2018|Dalton Trans.|47|14263|doi:10.1039/C8DT01338A

research product

CCDC 1435492: Experimental Crystal Structure Determination

Related Article: Sarah Keller, Antonio Pertegás, Giulia Longo, Laura Martínez, Jesús Cerdá, José M. Junquera-Hernández, Alessandro Prescimone, Edwin C. Constable, Catherine E. Housecroft, Enrique Ortí, Henk J. Bolink|2016|J.Mater.Chem.C|4|3857|doi:10.1039/C5TC03725E

research product

CCDC 1535143: Experimental Crystal Structure Determination

Related Article: Sarah Keller, Alessandro Prescimone, Henk Bolink, Michele Sessolo, Giulia Longo, Laura Martínez-Sarti, José M. Junquera-Hernández, Edwin C. Constable, Enrique Ortí, Catherine E. Housecroft|2018|Dalton Trans.|47|14263|doi:10.1039/C8DT01338A

research product

CCDC 1978439: Experimental Crystal Structure Determination

Related Article: Sarah Keller, Alessandro Prescimone, Maria-Grazia La Placa, José M. Junquera-Hernández, Henk J. Bolink, Edwin C. Constable, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2020|RSC Advances|10|22631|doi:10.1039/D0RA03824E

research product