6533b86efe1ef96bd12cc9e6
RESEARCH PRODUCT
Full configuration interaction calculation of singlet excited states of Be3
José M. Junquera-hernándezJosé Sánchez-marínStefano EvangelistiGian Luigi Bendazzolisubject
Atomic clustersElectron correlationsIonisation potentialGeneral Physics and AstronomyFull configuration interactionBeryllium ; Configuration interactions ; Excited states ; Orbital calculations ; Ground states ; Ionisation potential ; Molecular configurations ; Transition moments ; Quadrupole moments ; Molecular moments ; Electron correlations ; Atomic clustersPhysical and Theoretical Chemistry:FÍSICA::Química física [UNESCO]Basis setElectronic correlationChemistryConfiguration interactionsExcited statesPhysics::Physics EducationMolecular configurationsTransition momentsUNESCO::FÍSICA::Química físicaOrbital calculationsGround statesDipoleExcited stateQuadrupoleQuadrupole momentsMolecular momentsBerylliumAtomic physicsIonization energyGround statedescription
The full configuration interaction (FCI) study of the singlets vertical spectrum of the neutral beryllium trimer has been performed using atomic natural orbitals [3s2p1d] basis set. The FCI triangular equilibrium structure of the ground state has been used to calculate the FCI vertical excitation energies up to 4.8 eV. The FCI vertical ionization potential for the same geometry and basis set amounts to 7.6292 eV. The FCI dipole and quadrupole transition moments from the ground state are reported as well. The FCI electric quadrupole moment of the X (3)A(1) (') ground state has been also calculated with the same basis set (Theta(zz)=-2.6461 a.u., Theta(xx)=Theta(yy)=-1/2Theta(zz)). Twelve of the 19 calculated excited singlets are doubly excited states. Most of the states have large multiconfigurational character. These results provide benchmark values for electronic correlation multireference methods. (4ex6MO)CAS-SDCI values for the same energies and properties are also reported.
year | journal | country | edition | language |
---|---|---|---|---|
2004-01-01 | The Journal of Chemical Physics |