0000000000006300

AUTHOR

Markus Neuburger

showing 33 related works from this author

Inside Front Cover: Long-Living Light-Emitting Electrochemical Cells - Control through Supramolecular Interactions (Adv. Mater. 20/2008)

2008

Organic semiconductorFront coverMaterials scienceMechanics of Materialsbusiness.industryMechanical EngineeringSupramolecular chemistryOLEDOptoelectronicsGeneral Materials ScienceNanotechnologybusinessElectrochemical cellAdvanced Materials
researchProduct

Polymorphism control of an active pharmaceutical ingredient beneath calixarene-based Langmuir monolayers.

2014

This communication demonstrates the possibility to nucleate and grow different crystalline polymorphic forms of gabapentin (GBP) using, as nucleation templates, Langmuir monolayers of an amphiphilic calixarene at different packing densities.

Models MolecularLangmuirCyclohexanecarboxylic AcidsNucleation02 engineering and technology010402 general chemistry01 natural sciencesCatalysisAmphiphileCalixareneMonolayerMaterials ChemistryOrganic chemistryAminesta116gamma-Aminobutyric AcidActive ingredientMolecular StructureChemistryMetals and AlloysGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsChemical engineeringPolymorphism (materials science)Pharmaceutical PreparationsCeramics and CompositesCalixarenesGabapentin0210 nano-technologyChemical communications (Cambridge, England)
researchProduct

Thienylpyridine-based cyclometallated iridium(III) complexes and their use in solid state light-emitting electrochemical cells

2013

The synthesis and characterization of four iridium(iii) complexes [Ir(thpy)2(N^N)][PF6] where Hthpy = 2-(2'-thienyl)pyridine and N^N are 6-phenyl-2,2'-bipyridine (1), 4,4'-di-(t)butyl-2,2'-bipyridine (2), 4,4'-di-(t)butyl-6-phenyl-2,2'-bipyridine (3) or 4,4'-dimethylthio-2,2'-bipyridine (4) are described. The single crystal structures of ligand 4 and the complexes containing the [Ir(thpy)2(1)](+) and [Ir(thpy)2(4)](+) cations have been determined. In [Ir(thpy)2(1)](+), the pendant phenyl ring engages in an intra-cation π-stacking interaction with one of the thienyl rings in the solid state, and undergoes hindered rotation on the NMR timescale in [Ir(thpy)2(1)](+) and [Ir(thpy)2(3)](+). The …

PhotoluminescenceLigandAnalytical chemistrychemistry.chemical_element02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesSpectral line0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundCrystallographychemistryPyridineDensity functional theoryIridiumEmission spectrum0210 nano-technologySingle crystal
researchProduct

A Supramolecularly-Caged Ionic Iridium(III) Complex Yielding Bright and Very Stable Solid-State Light-Emitting Electrochemical Cells

2008

A new iridium(III) complex showing intramolecular interligand pi-stacking has been synthesized and used to improve the stability of single-component, solid-state light-emitting electrochemical cell (LEC) devices. The pi-stacking results in the formation of a very stable supramolecularly caged complex. LECs using this complex show extraordinary stabilities (estimated lifetime of 600 h) and luminance values (average luminance of 230 cd m-2) indicating the path toward stable ionic complexes for use in LECs reaching stabilities required for practical applications.

Analytical chemistrySolid-statechemistry.chemical_elementIonic bondingGeneral ChemistryPhotochemistryBiochemistryLuminanceCatalysisElectrochemical cellColloid and Surface ChemistrychemistryIntramolecular forceIridiumJournal of the American Chemical Society
researchProduct

Regioisomerism in cationic sulfonyl-substituted [Ir(C^N)2(N^N)]+ complexes: its influence on photophysical properties and LEC performance

2016

A series of regioisomeric cationic iridium complexes of the type [Ir(C^N)2(bpy)][PF6] (bpy = 2,2'-bipyridine) is reported. The complexes contain 2-phenylpyridine-based cyclometallating ligands with a methylsulfonyl group in either the 3-, 4- or 5-position of the phenyl ring. All the complexes have been fully characterized, including their crystal structures. In acetonitrile solution, all the compounds are green emitters with emission maxima between 493 and 517 nm. Whereas substitution meta to the Ir-C bond leads to vibrationally structured emission profiles and photoluminescence quantum yields of 74 and 77%, placing a sulfone substituent in a para position results in a broad, featureless em…

Sulfonylchemistry.chemical_classificationPhotoluminescenceChemistrySubstituentQuantum yieldchemistry.chemical_element02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyPhotochemistry01 natural sciences0104 chemical sciencesSulfoneInorganic Chemistrychemistry.chemical_compoundCrystallographyDensity functional theoryIridiumTriplet state0210 nano-technologyDalton Transactions
researchProduct

Colour tuning by the ring roundabout: [Ir(C^N)2(N^N)]+ emitters with sulfonyl-substituted cyclometallating ligands

2015

A series of cationic bis-cyclometallated iridium(III) complexes [Ir(C^N)2(N^N)]+ is reported. Cyclometallating C^N ligands are based on 2-phenylpyridine with electron-withdrawing sulfone substituents in the phenyl ring: 2-(4-methylsulfonylphenyl)pyridine (H1) and 2-(3-methylsulfonylphenyl)pyridine (H2). 2-(1H-Pyrazol-1-yl)pyridine (pzpy) and 2-(3,5-dimethyl-1H-pyrazol-1-yl)pyridine (dmpzpy) are used as electron-rich ancillary N^N ligands. The complexes have been fully characterized and the single crystal structure of [Ir(2)2(dmpzpy)][PF6]·MeCN has been determined. Depending on the position of the methylsulfonyl group, the complexes are green or blue emitters with vibrationally structured em…

Sulfonylchemistry.chemical_classificationGeneral Chemical Engineeringchemistry.chemical_element02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnologyRing (chemistry)Photochemistry01 natural sciences0104 chemical sciencesSulfoneCrystallographychemistry.chemical_compoundchemistryPyridineDensity functional theoryIridiumTriplet state0210 nano-technologySingle crystalRSC Advances
researchProduct

Long-Living Light-Emitting Electrochemical Cells - Control through Supramolecular Interactions

2008

Light-emitting electrochemical cells with lifetimes surpassing 3000 hours at an average luminance of 200 cd m(-2) are obtained with an ionic iridium(III) complex conveniently designed to form a supramolecularly caged structure.

Materials scienceMechanical EngineeringSupramolecular chemistrychemistry.chemical_elementIonic bondingPhotochemistryLuminanceElectrochemical cellOrganic semiconductorchemistryMechanics of MaterialsOLEDGeneral Materials ScienceIridiumAdvanced Materials
researchProduct

Tuning the photophysical properties of cationic iridium(iii) complexes containing cyclometallated 1-(2,4-difluorophenyl)-1H-pyrazole through function…

2012

Four new heteroleptic iridium(III) complexes in the family [Ir(dfppz)(2)((NN)-N-boolean AND)](+), where Hdfppz = 1-(2,4-difluorophenyl)-1H-pyrazole and (NN)-N-boolean AND = 6-phenyl-2,2'-bipyridine (1), 4,4'-(di-tert-butyl)-6-phenyl-2,2'-bipyridine (2), 4,4'-(di-tert-butyl)-6,6'-diphenyl-2,2'-bipyridine (3) and 4,4'-bis(dimethylamino)-2,2'-bipyridine (4), have been synthesized as the hexafluoridophosphate salts and fully characterized. Single crystal structures of ligand 3 and the precursor [Ir-2(dfppz)(4)(mu-Cl)(2)] have been determined, along with the structures of the complexes 4{[Ir(dfppz)(2)(1)][PF6]}center dot 3CH(2)Cl(2), [Ir(dfppz)(2)(3)][PF6]center dot CH2Cl2 and [Ir(dfppz)(2)(4)][…

Absorption spectroscopyChemistryLigandAnalytical chemistrychemistry.chemical_element02 engineering and technologyNuclear magnetic resonance spectroscopyPyrazole010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences22'-Bipyridine0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundCrystallographyIridiumTriplet state0210 nano-technologyAcetonitrileDalton Trans.
researchProduct

Fine‐Tuning of Photophysical and Electronic Properties of Materials for Photonic Devices Through Remote Functionalization

2012

We report four new iridium(III) complexes of the type [Ir(ppy)2(N?N)][PF6] in which N?N is a 4,6-diphenyl-2,2`-bipyridine and the 4-phenyl ring is substituted at either the para or meta positions [4-Me, N?N = 1; 4-Br, N?N = 2; 3,5-Br2, N?N = 3; 3,5-(C6H4-4-NPh2)2, N?N = 4]. The complexes have been fully characterized, and single-crystal diffraction analyses of [Ir(ppy)2(N?N)][PF6] (N?N = 13) confirmed that each [Ir(ppy)2(N?N)]+ cation exhibits face-to-face p-stacking between the pendant phenyl substituent of the N?N ligand and the cyclometallated phenyl ring of an adjacent [ppy] ligand. In solution, the complexes are short-lived emitters; the emission maxima for [Ir(ppy)2(1)][PF6], [Ir(ppy)…

PhotoluminescenceChemistryLigandStereochemistrySubstituentchemistry.chemical_element02 engineering and technologyElectroluminescence010402 general chemistry021001 nanoscience & nanotechnologyRing (chemistry)01 natural sciences0104 chemical sciencesInorganic ChemistryCrystallographychemistry.chemical_compoundX-ray crystallographyEmission spectrumIridium0210 nano-technologyEuropean Journal of Inorganic Chemistry
researchProduct

Stable and Efficient Solid-State Light-Emitting Electrochemical Cells Based on a Series of Hydrophobic Iridium Complexes

2011

Light-emitting electrochemical cells (LECs) based on ionic transition-metal complexes (iTMCs) exhibiting high efficiency, short turn-on time, and long stability have recently been presented. Furthermore, LECs emitting in the full range of the visible spectrum including white light have been reported. However, all these achievements were obtained individually, not simultaneously, using in each case a different iTMC. In this work, device stability is maintained by employing intrinsically stable ionic iridium complexes, while increasing the complex and the device quantum yields for exciton-to-photon conversion. This is done by sequentially modifying the archetype ionic iridium complex [Ir(ppy)…

Materials sciencePhotoluminescenceRenewable Energy Sustainability and the EnvironmentLigandIonic bondingQuantum yieldchemistry.chemical_element02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyPhotochemistry01 natural sciences0104 chemical sciencesElectrochemical cellchemistryGeneral Materials ScienceLight-emitting electrochemical cellIridium0210 nano-technologyVisible spectrumAdvanced Energy Materials
researchProduct

Long-Living Emitting Electrochemical Cells Based on Supramolecular π-π Interactions

2009

AbstractThe complex [Ir(ppy)2(dpbpy)][PF6] (Hppy = 2-phenylpyridine, dpbpy = 6,6'-diphenyl-2,2'-bipyridine) has been prepared and evaluated as an electroluminescent component for light-emitting electrochemical cells (LECs). The complex exhibits two intramolecular face-to-face π-stacking interactions and long-lived LECs have been constructed; the device characteristics are not significantly improved in comparison to analogous LECs with 6-phenyl-2,2'-bipyridine with only one π-stacking interaction.

Bipyridinechemistry.chemical_compoundMaterials sciencechemistryIntramolecular forceSupramolecular chemistryElectroluminescenceLuminescencePhotochemistryElectrochemical cellMRS Proceedings
researchProduct

Archetype Cationic Iridium Complexes and Their Use in Solid-State Light-Emitting Electrochemical Cells

2009

The archetype ionic transition-metal complexes (iTMCs) [Ir(ppy)2(bpy)][PF6] and [Ir(ppy)2(phen)][PF6], where Hppy = 2-phenylpyridine, bpy = 2,2'-bipyridine, and phen = 1,10-phenanthroline, are used as the primary active components in light-emitting electrochemical cells (LECs). Solution and solid-state photophysical properties are reported for both complexes and are interpreted with the help of density functional theory calculations. LEC devices based on these archetype complexes exhibit long turn-on times (70 and 160 h, respectively) and low external quantum efficiencies (~ 2%) when the complex is used as a pure film. The long turn-on times are attributed to the low mobility of the counter…

Materials scienceIonic bondingchemistry.chemical_elementElectroluminescenceCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsElectrochemical cellBiomaterialschemistry.chemical_compoundBipyridinechemistryTransition metalIonic liquidElectrochemistryPhysical chemistryOrganic chemistryDensity functional theoryIridiumAdvanced Functional Materials
researchProduct

Two are not always better than one: ligand optimisation for long-living light-emitting electrochemical cells

2009

The complex [Ir(ppy)2(dpbpy)][PF6] (Hppy = 2-phenylpyridine, dpbpy = 6,6'-diphenyl-2,2'-bipyridine) has been prepared and evaluated as an electroluminescent component for light-emitting electrochemical cells (LECs); the complex exhibits two intramolecular face-to-face π-stacking interactions and long-lived LECs have been constructed; the device characteristics are not significantly improved in comparison to analogous LECs with 6-phenyl-2,2'-bipyridine. Costa Riquelme, Ruben Dario, Ruben.Costa@uv.es ; Orti Guillen, Enrique, Enrique.Orti@uv.es ; Bolink, Henk, Henk.Bolink@uv.es

Complex ; 2-phenylpyridine ; LECs ; Light-emitting electrochemical cellsLigandUNESCO::QUÍMICALight-emitting electrochemical cellsUNESCO::QUÍMICA::Química analíticaLECsMetals and AlloysNanotechnologyGeneral ChemistryElectroluminescence:QUÍMICA [UNESCO]Combinatorial chemistryCatalysisSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsElectrochemical cellchemistry.chemical_compoundchemistryComplexIntramolecular force:QUÍMICA::Química analítica [UNESCO]Materials ChemistryCeramics and Composites2-phenylpyridine2-PhenylpyridineChemical Communications
researchProduct

Bis-Sulfone- and Bis-Sulfoxide-Spirobifluorenes: Polar Acceptor Hosts with Tunable Solubilities for Blue-Phosphorescent Light-Emitting Devices

2016

Bis-sulfone- and bis-sulfoxide-spirobifluorenes are a promising class of high-triplet-energy electron-acceptor hosts for blue phosphorescent light-emitting devices. The molecular design and synthetic route are simple and facilitate tailoring of the solubilities of the host materials without lowering the high-energy triplet state. The syntheses and characterization (including single-crystal structures) of four electron-accepting hosts are reported; the trend in their reduction potentials is consistent with the electron-withdrawing nature of the sulfone or sulfoxide substituents. Emission maxima of 421–432 nm overlap with the MLCT absorption of the sky-blue emitter bis(4,6-difluorophenyl-pyri…

Phosphine oxidechemistry.chemical_classificationOrganic ChemistrySulfoxide02 engineering and technologyElectron acceptor010402 general chemistry021001 nanoscience & nanotechnologyPhotochemistry01 natural sciencesAcceptor0104 chemical sciencesSulfonechemistry.chemical_compoundchemistryOLEDPhysical and Theoretical ChemistryTriplet state0210 nano-technologyPhosphorescenceEuropean Journal of Organic Chemistry
researchProduct

Single Molecule Solid State Light Emitting Electrochemical Cells with Lifetimes Superior to 3000 Hours

2008

ChemistrySolid-stateMoleculePhotochemistryElectrochemical cellMaterials Research Society Symposium Proceedings
researchProduct

Not just size and shape: spherically symmetrical d5 and d10 metal ions give different coordination nets with 4,2′:6′,4″-terpyridines

2010

Functionalized 4,2′:6′,4″-terpyridine ligands have been used to provide a divergent N,N′-donor set for the formation of coordination polymers containing {Zn2(µ-OAc)4} or {Mn3(µ-OAc)4(OAc)2} scaffolds. Single-stranded coordination polymers are produced from the reactions of 4′-(4-bromophenyl)-4,2′:6′,4″-terpyridine (1) and 4′-(4-methylthiophenyl)-4,2′:6′,4″-terpyridine (2) with Zn(OAc)2·2H2O. In [Zn2(1)(OAc)4]n and [Zn2(2)(OAc)4]n, the two outer nitrogen donors of the 4,2′:6′,4″-terpyridine ligands, bind to the axial sites of {Zn2(µ-OAc)4} units to generate coordination polymer chains which are π-stacked so that the V-shaped ligand domains are interleaved. When Mn(OAc)2·4H2O is treated with …

chemistry.chemical_classificationCoordination polymerLigandMetal ions in aqueous solutionGeneral ChemistryPolymerCondensed Matter PhysicsIonchemistry.chemical_compoundCrystallographychemistryPyridineAntiferromagnetismGeneral Materials ScienceGround stateCrystEngComm
researchProduct

[Cu(bpy)(P^P)]+ containing light-emitting electrochemical cells: improving performance through simple substitution

2014

Light-emitting electrochemical cells (LECs) containing [Cu(POP)(N^N)][PF6] (POP = bis(2-diphenylphosphinophenyl)ether, N^N = 6-methyl- or 6,6′-dimethyl-2,2′-bipyridine) exhibit luminance and efficiency surpassing previous copper(i)-containing LECs.

Materials scienceF300H600F100Substitution (logic)F200chemistry.chemical_elementNanotechnologyEtherCopper3. Good healthElectrochemical cellInorganic Chemistrychemistry.chemical_compoundchemistryPhysical chemistry
researchProduct

CCDC 973532: Experimental Crystal Structure Determination

2014

Related Article: Ludovico G. Tulli, Negar Moridi, Wenjie Wang, Kaisa Helttunen, Markus Neuburger, David Vaknin, Wolfgang Meier, Patrick Shahgaldian|2014|Chem.Commun.|50|3938|doi:10.1039/C4CC00928B

25262728-tetrakis(Dodecyloxy)pentacyclo[19.3.1.137.1913.11519]octacosa-1(25)3(28)469(27)101215(26)16182123-dodecaene-5111723-tetracarboxylic acid pyridine solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 871500: Experimental Crystal Structure Determination

2013

Related Article: Edwin C. Constable, Markus Neuburger, Pirmin Rösel, Gabriel E. Schneider, Jennifer A. Zampese, Catherine E. Housecroft, Filippo Monti, Nicola Armaroli, Rubén D. Costa, and Enrique Ortí|2013|Inorg.Chem.|52|885|doi:10.1021/ic302026f

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters55'-bis(Pyren-1-yl)-22'-bipyridineExperimental 3D Coordinates
researchProduct

CCDC 949190: Experimental Crystal Structure Determination

2013

Related Article: Andreas M. Bünzli, Henk J. Bolink, Edwin C. Constable, Catherine E. Housecroft, José M. Junquera-Hernández, Markus Neuburger, Enrique Ortí, Antonio Pertegás, Juan J. Serrano-Pérez, Daniel Tordera, Jennifer A. Zampese|2014|Dalton Trans.|43|738|doi:10.1039/C3DT52622D

Space GroupCrystallography(6-Phenyl-22'-bipyridine)-bis(2-(pyridin-2-yl)thien-3-yl)-iridium hexafluorophosphateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 871501: Experimental Crystal Structure Determination

2013

Related Article: Edwin C. Constable, Markus Neuburger, Pirmin Rösel, Gabriel E. Schneider, Jennifer A. Zampese, Catherine E. Housecroft, Filippo Monti, Nicola Armaroli, Rubén D. Costa, and Enrique Ortí|2013|Inorg.Chem.|52|885|doi:10.1021/ic302026f

Space GroupCrystallographyCrystal System(55'-bis(Pyren-1-yl)-22'-bipyridine)-bis(2-(pyridin-2-yl)phenyl)-iridium hexafluorophosphate dichloromethane solvate hydrateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 974892: Experimental Crystal Structure Determination

2016

Related Article: Cathrin D. Ertl, Henk J. Bolink, Catherine E. Housecroft, Edwin C. Constable, Enrique Ortí, José M. Junquera-Hernández, Markus Neuburger, Nail M. Shavaleev, Mohammad Khaja Nazeeruddin and David Vonlanthen|2016|Eur.J.Org.Chem.|2016|2037|doi:10.1002/ejoc.201600247

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters27-bis(Phenylsulfonyl)-99'-spirobi[fluorene] dichloromethane solvateExperimental 3D Coordinates
researchProduct

CCDC 1421913: Experimental Crystal Structure Determination

2016

Related Article: Cathrin D. Ertl, Lidón Gil-Escrig, Jesús Cerdá, Antonio Pertegás, Henk J. Bolink, José M. Junquera-Hernández, Alessandro Prescimone, Markus Neuburger, Edwin C. Constable, Enrique Ortí, Catherine E. Housecroft|2016|Dalton Trans.|45|11668|doi:10.1039/C6DT01325B

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates(22'-bipyridine)-bis(5-(methylsulfonyl)-2-(pyridin-2-yl)phenyl)-iridium hexafluorophosphate dichloromethane solvate
researchProduct

CCDC 1421914: Experimental Crystal Structure Determination

2016

Related Article: Cathrin D. Ertl, Lidón Gil-Escrig, Jesús Cerdá, Antonio Pertegás, Henk J. Bolink, José M. Junquera-Hernández, Alessandro Prescimone, Markus Neuburger, Edwin C. Constable, Enrique Ortí, Catherine E. Housecroft|2016|Dalton Trans.|45|11668|doi:10.1039/C6DT01325B

Space GroupCrystallographyCrystal System(22'-bipyridine)-bis(4-(methylsulfonyl)-2-(pyridin-2-yl)phenyl)-iridium hexafluorophosphate hydrateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 949192: Experimental Crystal Structure Determination

2013

Related Article: Andreas M. Bünzli, Henk J. Bolink, Edwin C. Constable, Catherine E. Housecroft, José M. Junquera-Hernández, Markus Neuburger, Enrique Ortí, Antonio Pertegás, Juan J. Serrano-Pérez, Daniel Tordera, Jennifer A. Zampese|2014|Dalton Trans.|43|738|doi:10.1039/C3DT52622D

Space GroupCrystallographyCrystal System(44'-bis(Methylsulfanyl)-22'-bipyridine)-bis(2-(pyridin-2-yl)thien-3-yl)-iridium hexafluorophosphate dichloromethane solvateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1009455: Experimental Crystal Structure Determination

2014

Related Article: Sarah Keller, Edwin C. Constable, Catherine E. Housecroft, Markus Neuburger, Alessandro Prescimone, Giulia Longo, Antonio Pertegás, Michele Sessolo, Henk J. Bolink|2014|Dalton Trans.|43|16593|doi:10.1039/C4DT02847C

Space GroupCrystallographyCrystal System(66'-dimethyl-22'-bipyridine)-((oxydi-21-phenylene)bis(diphenylphosphine))-copper(i) hexafluorophosphate dichloromethane solvate dihydrateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1055780: Experimental Crystal Structure Determination

2015

Related Article: Cathrin D. Ertl, Jesús Cerdá, José M. Junquera-Hernández, Antonio Pertegás, Henk J. Bolink, Edwin C. Constable, Markus Neuburger, Enrique Ortí, Catherine E. Housecroft|2015|RSC Advances|5|42815|doi:10.1039/C5RA07940C

Space GroupCrystallographyCrystal SystemCrystal Structure(2-(35-dimethyl-1H-pyrazol-1-yl)pyridine)-bis(4-(methylsulfonyl)-2-(pyridin-2-yl)phenyl)-iridium hexafluorophosphate acetonitrile solvateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1421915: Experimental Crystal Structure Determination

2016

Related Article: Cathrin D. Ertl, Lidón Gil-Escrig, Jesús Cerdá, Antonio Pertegás, Henk J. Bolink, José M. Junquera-Hernández, Alessandro Prescimone, Markus Neuburger, Edwin C. Constable, Enrique Ortí, Catherine E. Housecroft|2016|Dalton Trans.|45|11668|doi:10.1039/C6DT01325B

Space GroupCrystallography(22'-bipyridine)-bis(3-(methylsulfonyl)-2-(pyridin-2-yl)phenyl)-iridium hexafluorophosphateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 949191: Experimental Crystal Structure Determination

2013

Related Article: Andreas M. Bünzli, Henk J. Bolink, Edwin C. Constable, Catherine E. Housecroft, José M. Junquera-Hernández, Markus Neuburger, Enrique Ortí, Antonio Pertegás, Juan J. Serrano-Pérez, Daniel Tordera, Jennifer A. Zampese|2014|Dalton Trans.|43|738|doi:10.1039/C3DT52622D

Space GroupCrystallographyCrystal System44'-bis(Methylsulfanyl)-22'-bipyridineCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 996509: Experimental Crystal Structure Determination

2014

Related Article: Sarah Keller, Edwin C. Constable, Catherine E. Housecroft, Markus Neuburger, Alessandro Prescimone, Giulia Longo, Antonio Pertegás, Michele Sessolo, Henk J. Bolink|2014|Dalton Trans.|43|16593|doi:10.1039/C4DT02847C

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(6-methyl-22'-bipyridine)-((oxydi-21-phenylene)bis(diphenylphosphine))-copper(i) hexafluorophosphate unknown solvateExperimental 3D Coordinates
researchProduct

CCDC 871502: Experimental Crystal Structure Determination

2013

Related Article: Edwin C. Constable, Markus Neuburger, Pirmin Rösel, Gabriel E. Schneider, Jennifer A. Zampese, Catherine E. Housecroft, Filippo Monti, Nicola Armaroli, Rubén D. Costa, and Enrique Ortí|2013|Inorg.Chem.|52|885|doi:10.1021/ic302026f

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(35-Difluoro-2-(pyridin-2-yl)phenyl)-(55'-bis(pyren-1-yl)-22'-bipyridine)-iridium hexafluorophosphate dichloromethane solvate monohydrateExperimental 3D Coordinates
researchProduct

CCDC 993287: Experimental Crystal Structure Determination

2016

Related Article: Cathrin D. Ertl, Henk J. Bolink, Catherine E. Housecroft, Edwin C. Constable, Enrique Ortí, José M. Junquera-Hernández, Markus Neuburger, Nail M. Shavaleev, Mohammad Khaja Nazeeruddin and David Vonlanthen|2016|Eur.J.Org.Chem.|2016|2037|doi:10.1002/ejoc.201600247

Space GroupCrystallographyCrystal System27-bis(Pentylsulfonyl)-99'-spirobi[fluorene]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 974893: Experimental Crystal Structure Determination

2016

Related Article: Cathrin D. Ertl, Henk J. Bolink, Catherine E. Housecroft, Edwin C. Constable, Enrique Ortí, José M. Junquera-Hernández, Markus Neuburger, Nail M. Shavaleev, Mohammad Khaja Nazeeruddin and David Vonlanthen|2016|Eur.J.Org.Chem.|2016|2037|doi:10.1002/ejoc.201600247

Space GroupCrystallography27-bis(Mesitylsulfonyl)-99'-spirobi[fluorene]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct