0000000000006840

AUTHOR

Walter Adriani

A new “sudden fright paradigm” to explore the role of (epi)genetic modulations of the DAT gene in fear-induced avoidance behavior

Alterations in dopamine (DA) reuptake are involved in several psychiatric disorders whose symptoms can be investigated in knock out rats for the DA transporter (DAT-KO). Recent studies evidenced the role of epigenetic DAT modulation in depressive-like behavior. Accordingly, we used heterozygous (HET) rats born from both HET parents (termed MIX-HET), compared to HET rats born from WT-mother and KO-father (MAT-HET), implementing the role of maternal care on DAT modulation. We developed a "sudden fright" paradigm (based on dark-light test) to study reaction to fearful inputs in the DAT-KO, MAT-HET, MIX-HET, and WT groups. Rats could freely explore the whole 3-chambers apparatus; then, they wer…

research product

Motor Transitions' Peculiarity of Heterozygous DAT Rats When Offspring of an Unconventional KOxWT Mating.

Abstract Causal factors of psychiatric diseases are unclear, due to gene × environment interactions. Evaluation of consequences, after a dopamine-transporter (DAT) gene knock-out (DAT-KO), has enhanced our understanding into the pathological dynamics of several brain disorders, such as Attention-Deficit/Hyperactivity and Bipolar-Affective disorders. Recently, our attention has shifted to DAT hypo-functional (heterozygous, HET) rodents: HET dams display less maternal care and HET females display marked hypo-locomotion if cared by HET dams (Mariano et al., 2019). We assessed phenotypes of male DAT-heterozygous rats as a function of their parents: we compared “maternal” origin (MAT-HET, obtain…

research product

Erratum to “Motor Transitions' Peculiarity of Heterozygous DAT Rats When Offspring of An Unconventional KOxWT Mating” [Neuroscience 433C (2020) 108–120]

research product

Social Interactions of Dat-Het Epi-Genotypes Differing for Maternal Origins: The Development of a New Preclinical Model of Socio-Sexual Apathy

Social interaction is essential for life but is impaired in many psychiatric disorders. We presently focus on rats with a truncated allele for dopamine transporter (DAT). Since heterozygous individuals possess only one non-mutant allele, epigenetic interactions may unmask latent genetic predispositions. Homogeneous “maternal” heterozygous offspring (termed MAT-HET) were born from dopamine-transporter knocked-out (DAT-KO) male rats and wild-type (WT) mothers

research product