0000000000007119
AUTHOR
Matthias Krack
A comprehensive study of structure and properties of nanocrystalline zinc peroxide
Abstract Nanocrystalline zinc peroxide (nano-ZnO2) was synthesized through a hydrothermal process and comprehensively studied using several experimental techniques. Its crystal structure was characterized by X-ray diffraction, and the average crystallite size of 22 nm was estimated by Rietveld refinement. The temperature-dependent local environment around zinc atoms was reconstructed using reverse Monte Carlo (RMC) analysis from the Zn K-edge X-ray absorption spectra. The indirect band gap of about 4.6 eV was found using optical absorption spectroscopy. Lattice dynamics of nano-ZnO2 was studied by infrared and Raman spectroscopy. In situ Raman measurements indicate the stability of nano-ZnO…
Study of High-Temperature Behaviour of ZnO by Ab Initio Molecular Dynamics Simulations and X-ray Absorption Spectroscopy
Wurtzite-type zinc oxide (w-ZnO) is a widely used material with a pronounced structural anisotropy along the c axis, which affects its lattice dynamics and represents a difficulty for its accurate description using classical models of interatomic interactions. In this study, ab initio molecular dynamics (AIMD) was employed to simulate a bulk w-ZnO phase in the NpT ensemble in the high-temperature range from 300 K to 1200 K. The results of the simulations were validated by comparison with the experimental Zn K-edge extended X-ray absorption fine structure (EXAFS) spectra and known diffraction data. AIMD NpT simulations reproduced well the thermal expansion of the lattice, and the pronounced …
Interpretation of the U L3-edge EXAFS in uranium dioxide using molecular dynamics and density functional theory simulations
X-ray absorption spectroscopy is employed to study the local structure of pure and Cr-doped UO2 at 300 K. The U L3-edge EXAFS spectrum is interpreted within the multiplescattering (MS) theory using the results of the classical and ab initio molecular dynamics simulations, allowing us to validate the accuracy of theoretical models. The Cr K-edge XANES is simulated within the full-multiple-scattering formalism considering a substitutional model (Cr at U site). It is shown that both unrelaxed and relaxed structures, produced by ab initio density functional theory (DFT) calculations, fail to describe the experiment.
Interpretation of the Cu K-edge EXAFS spectra of Cu3N using ab initio molecular dynamics
Financial support provided by ERDF project No. 1.1.1.2/VIAA/l/16/147 (1.1.1.2/16/I/001) under the activity “Post-doctoral research aid” realized at the Institute of Solid State Physics, University of Latvia is greatly acknowledged. This work was supported by a grant from the Swiss National Supercomputing Centre (CSCS) under the project ID s681 .
First-principles study of nitrogen doping in cubic and amorphous Ge2Sb2Te5
We investigated the structural, electronic and vibrational properties of amorphous and cubic Ge(2)Sb(2)Te(5) doped with N at 4.2 at.% by means of large scale ab initio simulations. Nitrogen can be incorporated in molecular form in both the crystalline and amorphous phases at a moderate energy cost. In contrast, insertion of N in the atomic form is very energetically costly in the crystalline phase, though it is still possible in the amorphous phase. These results support the suggestion that N segregates at the grain boundaries during the crystallization of the amorphous phase, resulting in a reduction in size of the crystalline grains and an increased crystallization temperature.
Ab initio molecular dynamics simulations of the Sc K-edge EXAFS of scandium trifluoride
Scandium fluoride ScF3 has a simple cubic structure and attracts attention due to its large negative thermal expansion (NTE) over a wide range of temperatures (0-1100 K). In this study we present ab initio molecular dynamics (AIMD) simulations of ScF3 and their validation using the Sc K-edge EXAFS spectra in the temperature range from 300 K to 1000 K measured at the XAFS beamline of ELETTRA. The obtained results allow an assessement of the employed AIMD model and provide insight into the local structure and the lattice dynamics of ScF3 beyond the harmonic approximation. A strong anisotropy of the fluorine atom vibrations in the direction orthogonal to the -Sc-F-Sc- chain is observed. An exp…
Comparative classical and ab initio Molecular Dynamics study of molten and glassy germanium dioxide
A Molecular Dynamics (MD) study of static and dynamic properties of molten and glassy germanium dioxide is presented. The interactions between the atoms are modelled by the classical pair potential proposed by Oeffner and Elliott (OE) [Oeffner R D and Elliott S R 1998, Phys. Rev. B, 58, 14791]. We compare our results to experiments and previous simulations. In addition, an ab initio method, the so-called Car-Parrinello Molecular Dynamics (CPMD), is applied to check the accuracy of the structural properties, as obtained by the classical MD simulations with the OE potential. As in a similar study for SiO2, the structure predicted by CPMD is only slightly softer than that resulting from the cl…
Ab initio molecular dynamics simulations of negative thermal expansion in ScF3: the effect of the supercell size
The authors sincerely thank S. Ali, A. Kalinko, and F. Rocca for providing experimental EXAFS data, as well as M. Isupova, V. Kashcheyevs, and A. I. Popov for stimulating discussions. Financial support provided by project No. 1.1.1.2/VIAA/l/16/147 (1.1.1.2/16/I/001) under the activity “Post-doctoral research aid” realized at the Institute of Solid State Physics, University of Latvia is greatly acknowledged by D.B. A.K and J.P. would like to thank the support of the Latvian Council of Science project No. lzp-2018/2–0353.
Analysis of the U L3-edge X-ray absorption spectra in UO2 using molecular dynamics simulations
This work was supported by a grant from the Swiss National Supercomputing Centre (CSCS) under the project ID s444. The resource allocation within the PSI share at CSCS and on the PSI compute cluster Merlin4 is also acknowledged. D. B. is grateful for a fellowship within the Sciex-NMS programme. A. K. was supported by Latvian Science Council Grant no. 187/2012.
Negative thermal expansion of ScF 3 : first principles vs empirical molecular dynamics
The calculations were performed on the Paul Scherrer Institute cluster Merlin4, HPC resources of the Swiss National Supercomputing Centre in Lugano (project ID s626) as well as at the Latvian SuperCluster (LASC). Authors are greatly indebted to S. Ali, D. Gryaznov, R.A. Evarestov, M. Isupova, A. Kalinko, V. Kashcheyevs, V. Pankratov, S. Piskunov, A. I. Popov, J. Purans, F. Rocca, L. Shirmane, P. Zˇguns, and Yu. F. Zhukovskii for many stimulating discussions. Financial support provided by project No. 1.1.1.2/VIAA/l/16/147 (1.1.1.2/16/I/001) under the activity “Post-doctoral research aid” realized at the Institute of Solid State Physics, University of Latvia is greatly acknowledged.