0000000000007201

AUTHOR

Emilia Niemczyk

0000-0003-0867-3587

showing 4 related works from this author

Algae in Biotechnological Processes

2018

As photoautotrophic organisms, algae possess all of the valuable features that determine their role as the primary producers in the biosphere. A wide range of tolerance based on their extremely efficient adaptation to biochemical processes, as well as the specific cellular structure of these organisms, when correlated with the ecological plasticity of microalgae in particular, predispose these biota to growing and developing under either laboratory or industrial conditions. Hence, the natural features of algae have opened wide the door for the multidirectional biotechnological use of these organisms, with a dynamically growing number of such applications fully supporting this thesis. Among …

0106 biological sciences0301 basic medicineCyanobacteriaPollutantbiologyPrimary producersPhycobiliproteinBiomassBiotabiology.organism_classification01 natural sciences03 medical and health sciences030104 developmental biologyAlgae010608 biotechnologyEcosystemBiochemical engineering
researchProduct

The aminophosphonate glyphosine enhances phycobiliprotein yields from selected cyanobacterial cultures

2017

Among added-value products obtained from cyanobacterial cultures are phycobiliproteins, photosynthetic pigments that have found an increasing number of applications as natural dyes for food, cosmetics, pharmaceuticals, and antioxidants. To obtain sustainable production, we aimed at maximizing phycobilin yield through the increase of either the final biomass or the specific content of these pigments by varying culture parameters, such as chemical composition and pH of the medium or quality and intensity of the light. Here, we report that the addition to the culture medium of millimolar or submillimolar concentrations of the aminophosphonate glyphosine [(N,N-bis(phosphonomethyl)glycine], form…

0106 biological sciences0301 basic medicineFreshwater and halophilic cyanobacteriaBiomassPlant ScienceBiologyPhycobiliproteinAquatic SciencePhotosynthesis01 natural sciencesNO03 medical and health scienceschemistry.chemical_compoundPigmentGlyphosine [(NBiomass yield; Freshwater and halophilic cyanobacteria; Glyphosine [(NN-bis(phosphonomethyl)glycine]; Phycobiliprotein; Product yield; Aquatic Science; Plant SciencePhycobilinFood scienceProduct yieldN-bis(phosphonomethyl)glycine]PhycobiliproteinPlant physiologyBiomass yieldHalophile030104 developmental biologyBiochemistrychemistryAminophosphonatevisual_artvisual_art.visual_art_medium010606 plant biology & botany
researchProduct

Boronic Acids of Pharmaceutical Importance Affect the Growth and Photosynthetic Apparatus of Cyanobacteria in a Dose-Dependent Manner

2020

The dynamic increase in the commercial application of antimicrobial derivatives of boronic acids, and potential impact of their presence in aquatic systems, supports the necessity to study the toxicity of these substances towards microorganisms of crucial meaning in the environment. One example of the mentioned derivatives is tavaborole (5-fluoro-substituted benzoxaborole), a pharmaceutical agent with antifungal activity. Cyanobacteria were used as model organisms, which are photoautotrophic prokaryotes, as representative aquatic bacteria and photoautotrophs associated with the plant kingdom. To the best of our knowledge, we investigated this issue for the first time. In order to recognize …

ChlorophyllCyanobacteriaHealth Toxicology and MutagenesisMicroorganismlcsh:Medicinebactericidal activitypharmaceuticalsToxicologyPhotosynthesisaryl boronic acids01 natural sciencescyanobacteriaArticle03 medical and health scienceschemistry.chemical_compoundFood sciencephotosynthetic pigmentsPhotosynthesisCarotenoidchemistry.chemical_classification0303 health sciencesDose-Response Relationship Drugbiology010405 organic chemistry030306 microbiologyChemistryPhycobiliproteinlcsh:RAntimicrobialbiology.organism_classificationBoronic AcidsHalophile0104 chemical sciencesChlorophyllToxins
researchProduct

Metabolic relation of cyanobacteria to aromatic compounds

2018

Cyanobacteria, also known as blue-green (micro)algae, are able to sustain many types of chemical stress because of metabolic adaptations that allow them to survive and successfully compete in a variety of ecosystems, including polluted ones. As photoautotrophic bacteria, these microorganisms synthesize aromatic amino acids, which are precursors for a large variety of substances that contain aromatic ring(s) and that are naturally formed in the cells of these organisms. Hence, the transformation of aromatic secondary metabolites by cyanobacteria is the result of the possession of a suitable “enzymatic apparatus” to carry out the biosynthesis of these compounds according to cellular requireme…

CyanobacteriaAromatic compoundsMicroorganismSecondary MetabolismCyanobacteriaApplied Microbiology and BiotechnologyAmino Acids Aromatic03 medical and health scienceschemistry.chemical_compoundBiosynthesisAlgaeBiotransformationMicroalgaeAromatic amino acidsOrganic ChemicalsBiotransformationEcosystem030304 developmental biologyMetabolic relationschemistry.chemical_classification0303 health sciencesbiology030306 microbiologyChemistryMetabolic responseGeneral MedicineMini-Reviewbiology.organism_classificationEnzymeBiochemistryBacteriaBiotechnologyApplied Microbiology and Biotechnology
researchProduct