0000000000007849

AUTHOR

Volker Bach

Smooth Feshbach map and operator-theoretic renormalization group methods

Abstract A new variant of the isospectral Feshbach map defined on operators in Hilbert space is presented. It is constructed with the help of a smooth partition of unity, instead of projections, and is therefore called smooth Feshbach map . It is an effective tool in spectral and singular perturbation theory. As an illustration of its power, a novel operator-theoretic renormalization group method is described and applied to analyze a general class of Hamiltonians on Fock space. The main advantage of the new renormalization group method over its predecessors is its technical simplicity, which it owes to the use of the smooth Feshbach map.

research product

Correlation at Low Temperature: II. Asymptotics

The present paper is a continuation of ref. 4, where the truncated two-point correlation function for a class of lattice spin systems was proved to have exponential decay at low temperature, under a weak coupling assumption. In this paper we compute the asymptotics of the correlation function as the temperature goes to zero. This paper thus extends ref. 3 in two directions: The Hamiltonian function is allowed to have several local minima other than a unique global minimum, and we do not require translation invariance of the Hamiltonian function. We are in particular able to handle spin systems on a general lattice.

research product

Analysis of Optimal High Resolution and Fixed Rate Scalar Quantization

In 2001, Hui and Neuhoff proposed a uniform quantizer with overload for the quantization of scalar signals and derived the asymptotically optimal size of the quantization bins in the high-bitrate limit. The purpose of the present paper is to prove a quantitatively more precise version of this result which, at the same time, is valid for a more general, quite natural class of probability distributions that requires only little regularity and includes, for instance, positive Lipschitz-continuous functions of unit integral.

research product

The renormalized electron mass in non-relativistic quantum electrodynamics

This work addresses the problem of infrared mass renormalization for a scalar electron in a translation-invariant model of non-relativistic QED. We assume that the interaction of the electron with the quantized electromagnetic field comprises a fixed ultraviolet regularization and an infrared regularization parametrized by $\sigma>0$. For the value $p=0$ of the conserved total momentum of electron and photon field, bounds on the renormalized mass are established which are uniform in $\sigma\to0$, and the existence of a ground state is proved. For $|p|>0$ sufficiently small, bounds on the renormalized mass are derived for any fixed $\sigma>0$. A key ingredient of our proofs is the operator-t…

research product

Localization at low temperature and infrared bounds

We consider a class of classical lattice spin systems, with Rn-valued spins and two-body interactions. Our main result states that the associated Gibbs measure localizes in certain cylindrical neighborhoods of the global minima of the unperturbed Hamiltonian. As an application we establish existence of a first order phase transition at low temperature, for a reflection positive mexican hat model on Zd, d⩾3, with a nonferromagnetic interaction.

research product

Construction of the ground state in nonrelativistic QED by continuous flows

AbstractFor a nonrelativistic hydrogen atom minimally coupled to the quantized radiation field we construct the ground state projection Pgs by a continuous approximation scheme as an alternative to the iteration scheme recently used by Fröhlich, Pizzo, and the first author [V. Bach, J. Fröhlich, A. Pizzo, Infrared-finite algorithms in QED: The groundstate of an atom interacting with the quantized radiation field, Comm. Math. Phys. (2006), doi: 10.1007/s00220-005-1478-3]. That is, we construct Pgs=limt→∞Pt as the limit of a continuously differentiable family (Pt)t⩾0 of ground state projections of infrared regularized Hamiltonians Ht. Using the ODE solved by this family of projections, we sho…

research product

Infrared-finite algorithms in QED II. The expansion of the groundstate of an atom interacting with the quantized radiation field

Abstract In this paper, we present an explicit and constructive algorithm enabling us to calculate the groundstate and the groundstate energy of a non-relativistic atom minimally coupled to the quantized radiation field up to an error of arbitrary finite order in the fine structure constant. Because of infrared divergences, which invalidate a straightforward Taylor expansion, an iterative construction is employed to remove the infrared cut-off in photon momentum space and to produce a convergent algorithm.

research product

Ferromagnetism of the Hubbard Model at Strong Coupling in the Hartree-Fock Approximation

As a contribution to the study of Hartree-Fock theory we prove rigorously that the Hartree-Fock approximation to the ground state of the d-dimensional Hubbard model leads to saturated ferromagnetism when the particle density (more precisely, the chemical potential mu) is small and the coupling constant U is large, but finite. This ferromagnetism contradicts the known fact that there is no magnetization at low density, for any U, and thus shows that HF theory is wrong in this case. As in the usual Hartree-Fock theory we restrict attention to Slater determinants that are eigenvectors of the z-component of the total spin, {S}_z = sum_x n_{x,\uparrow} - n_{x,\downarrow}, and we find that the ch…

research product

Spectral Analysis of Nonrelativistic Quantum Electrodynamics

I review the research results on spectral properties of atoms and molecules coupled to the quantized electromagnetic field or on simplified models of such systems obtained during the past decade. My main focus is on the results I have obtained in collaboration with Jurg Frohlich and Israel Michael Sigal [8, 9, 10, 11, 12, 13].

research product

Correlation at low temperature I. Exponential decay

Abstract The present paper generalizes the analysis in (Ann. H. Poincare 1 (2000) 59, Math. J. (AMS) 8 (1997) 123) of the correlations for a lattice system of real-valued spins at low temperature. The Gibbs measure is assumed to be generated by a fairly general Hamiltonian function with pair interaction. The novelty, as compared to [2,20], is that the single-site (self-) energies of the spins are not required to have only a single local minimum and no other extrema. Our derivation of exponential decay of correlations goes through the spectral analysis of a deformed Laplacian closely related to the Witten Laplacian studied in [2,20]. We prove that this Laplacian has a spectral gap above zero…

research product