6533b7d2fe1ef96bd125f5df

RESEARCH PRODUCT

Correlation at Low Temperature: II. Asymptotics

Volker BachJacob Schach Møller

subject

Hamiltonian mechanicsMathematical analysisCrystal systemStatistical and Nonlinear PhysicsCorrelationMaxima and minimaContinuationsymbols.namesakeLattice (order)symbolsExponential decayLaplace operatorMathematical PhysicsMathematicsMathematical physics

description

The present paper is a continuation of ref. 4, where the truncated two-point correlation function for a class of lattice spin systems was proved to have exponential decay at low temperature, under a weak coupling assumption. In this paper we compute the asymptotics of the correlation function as the temperature goes to zero. This paper thus extends ref. 3 in two directions: The Hamiltonian function is allowed to have several local minima other than a unique global minimum, and we do not require translation invariance of the Hamiltonian function. We are in particular able to handle spin systems on a general lattice.

https://doi.org/10.1023/b:joss.0000037236.34145.20