0000000000008078

AUTHOR

Manuel Bañó-polo

0000-0002-4840-4480

Membrane-Perturbing Activities of KL4-Related Surfactant Peptides

KL4 is a 21-residue peptide proposed as a potential substitute of pulmonary surfactant protein SP-B in synthetic surfactants, intended for the treatment of respiratory pathologies. The peptide, composed by leucines interrupted by lysine every four residues, was synthesized to simulate C-terminal amphipathic helical segments of SP-B. Once incorporated into lipid-protein complexes, KL4 promotes formation of interfacial films that produce and maintain surface tensions below 5 mN/m during compression-expansion cycling. Although KL4 was designed as an amphipathic helix at the membrane surface, the data on orientation and interactions of the peptide in membranes are contradictory. In the present …

research product

Cetylpyridinium chloride promotes disaggregation of SARS-CoV-2 virus-like particles

ABSTRACT Background SARS-CoV-2 is continuously disseminating worldwide. The development of strategies to break transmission is mandatory. Aim of the study To investigate the potential of cetylpyridinium chloride (CPC) as a viral inhibitor. Methods SARS-CoV-2 Virus Like-Particles (VLPs) were incubated with CPC, a potent surfactant routinely included in mouthwash preparations. Results Concentrations of 0.05% CPC (w/v) commonly used in mouthwash preparations are sufficient to promote the rupture of SARS-CoV-2 VLP membranes. Conclusion Including CPC in mouthwashes could be a prophylactic strategy to keep SARS-CoV-2 from spreading.

research product

The C-terminal Domains of Apoptotic BH3-only Proteins Mediate Their Insertion into Distinct Biological Membranes

Changes in the equilibrium of pro- and anti-apoptotic members of the B-cell lymphoma-2 (Bcl-2) protein family in the mitochondrial outer membrane (MOM) induce structural changes that commit cells to apoptosis. Bcl-2 homology-3 (BH3)-only proteins participate in this process by either activating pro-apoptotic effectors or inhibiting anti-apoptotic components and by promoting MOM permeabilization. The association of BH3-only proteins with MOMs is necessary for the activation and amplification of death signals; however, the nature of this association remains controversial, as these proteins lack a canonical transmembrane sequence. Here we used an in vitro expression system to study the inserti…

research product

Membrane insertion and topology of the translocon-associated protein (TRAP) gamma subunit

Translocon-associated protein (TRAP) complex is intimately associated with the ER translocon for the insertion or translocation of newly synthesised proteins in eukaryotic cells. The TRAP complex is comprised of three single-spanning and one multiple-spanning subunits. We have investigated the membrane insertion and topology of the multiple-spanning TRAP-γ subunit by glycosylation mapping and green fluorescent protein fusions both in vitro and in cell cultures. Results demonstrate that TRAP-γ has four transmembrane (TM) segments, an Nt/Ct cytosolic orientation and that the less hydrophobic TM segment inserts efficiently into the membrane only in the cellular context of full-length protein.

research product

Characterization of the inner membrane protein BB0173 from Borrelia burgdorferi.

Abstract Background The bacterial spirochete Borrelia burgdorferi is the causative agent of the most commonly reported arthropod-borne illness in the United States, Lyme disease. A family of proteins containing von Willebrand Factor A (VWFA) domains adjacent to a MoxR AAA+ ATPase have been found to be highly conserved in the genus Borrelia. Previously, a VWFA domain containing protein of B. burgdorferi, BB0172, was determined to be an outer membrane protein capable of binding integrin α3β1. In this study, the characterization of a new VWFA domain containing membrane protein, BB0173, is evaluated in order to define the location and topology of this multi-spanning membrane protein. In additio…

research product

N-glycosylation efficiency is determined by the distance to the C-terminus and the amino acid preceding an Asn-Ser-Thr sequon

N-glycosylation is the most common and versatile protein modification. In eukaryotic cells, this modification is catalyzed cotranslationally by the enzyme oligosaccharyltransferase, which targets the β-amide of the asparagine in an Asn-Xaa-Ser/Thr consensus sequon (where Xaa is any amino acid but proline) in nascent proteins as they enter the endoplasmic reticulum. Because modification of the glycosylation acceptor site on membrane proteins occurs in a compartment-specific manner, the presence of glycosylation is used to indicate membrane protein topology. Moreover, glycosylation sites can be added to gain topological information. In this study, we explored the determinants of N-glycosylati…

research product

Insertion of Bacteriorhodopsin Helix C Variants into Biological Membranes

A peptide corresponding to bacteriorhodopsin (bR) helix C, later named pHLIP, inserts across lipid bilayers as a monomeric α-helix at acidic pH, but is an unstructured surface-bound monomer at neutral pH. As a result of such pH-responsiveness, pHLIP targets acidic tumors and has been used as a vehicle for imaging and drug-delivery cargoes. To gain insights about the insertion of bR helix C into biological membranes, we replaced two key aspartic residues that control the topological transition from the aqueous phase into a lipid bilayer. Here, we used an in vitro transcription–translation system to study the translocon-mediated insertion of helix C-derived segments into rough microsomes. Our…

research product

Human peroxin PEX3 is co-translationally integrated into the ER and exits the ER in budding vesicles

The long-standing paradigm that all peroxisomal proteins are imported post-translationally into pre-existing peroxisomes has been challenged by the detection of peroxisomal membrane proteins (PMPs) inside the endoplasmic reticulum (ER). In mammals, the mechanisms of ER entry and exit of PMPs are completely unknown. We show that the human PMP PEX3 inserts co-translationally into the mammalian ER via the Sec61 translocon. Photocrosslinking and fluorescence spectroscopy studies demonstrate that the N-terminal transmembrane segment (TMS) of ribosome-bound PEX3 is recognized by the signal recognition particle (SRP). Binding to SRP is a prerequisite for targeting of the PEX3-containing ribosome•n…

research product

Charge Pair Interactions in Transmembrane Helices and Turn Propensity of the Connecting Sequence Promote Helical Hairpin Insertion

alpha-Helical hairpins, consisting of a pair of closely spaced transmembrane (TM) helices that are connected by a short interfacial turn, are the simplest structural motifs found in multi-spanning membrane proteins. In naturally occurring hairpins, the presence of polar residues is common and predicted to complicate membrane insertion. We postulate that the pre-packing process offsets any energetic cost of allocating polar and charged residues within the hydrophobic environment of biological membranes. Consistent with this idea, we provide here experimental evidence demonstrating that helical hairpin insertion into biological membranes can be driven by electrostatic interactions between clo…

research product

Polar/Ionizable Residues in Transmembrane Segments: Effects on Helix-Helix Packing

The vast majority of membrane proteins are anchored to biological membranes through hydrophobic alpha-helices. Sequence analysis of high-resolution membrane protein structures show that ionizable amino acid residues are present in transmembrane (TM) helices, often with a functional and/or structural role. Here, using as scaffold the hydrophobic TM domain of the model membrane protein glycophorin A (GpA), we address the consequences of replacing specific residues by ionizable amino acids on TM helix insertion and packing, both in detergent micelles and in biological membranes. Our findings demonstrate that ionizable residues are stably inserted in hydrophobic environments, and tolerated in t…

research product

Differences in the Association of BH3-Only Proteins to Biological Membranes

Apoptosis, a prevalent mechanism of programmed cell death, is regulated by the Bcl-2 protein family. The balance between pro- and anti-apoptotic Bcl-2 members in the mitochondrial outer membrane (MOM) protects or triggers MOM permeabilization. Bcl-2 homology-3 (BH3)-only proteins participate in this process activating pro-apoptotic effectors and promoting permeabilization of the MOM. The membrane association of BH3-only proteins is controversial due to the lack of a canonical carboxyl-terminal (C-terminal) transmembrane (TM) domain. We used an in vitro transcription/translation system to study the insertion capacity of these hydrophobic C-terminal regions of the BH3-members Bik, Bim, Noxa, …

research product

Molecular and topological membrane folding determinants of transient receptor potential vanilloid 2 channel.

Transient Receptor Potential (TRP) channels are related to adaptation to the environment and somatosensation. The transient receptor potential vanilloid (TRPV) subfamily includes six closely evolutionary related ion channels sharing the same domain organization and tetrameric arrangement in the membrane. In this study we have characterized biochemically TRPV2 channel membrane protein folding and transmembrane (TM) architecture. Deleting the first N-terminal 74 residues preceding the ankyrin repeat domain (ARD) show a key role for this region in targeting the protein to the membrane. We have demonstrated the co-translational insertion of the membrane-embedded region of the TRPV2 and its disp…

research product

Membrane Integration of Poliovirus 2B Viroporin

Virus infections can result in a variety of cellular injuries, and these often involve the permeabilization of host membranes by viral proteins of the viroporin family. Prototypical viroporin 2B is responsible for the alterations in host cell membrane permeability that take place in enterovirus-infected cells. 2B protein can be localized at the endoplasmic reticulum (ER) and the Golgi complex, inducing membrane remodeling and the blockade of glycoprotein trafficking. These findings suggest that 2B has the potential to integrate into the ER membrane, but specific information regarding its biogenesis and mechanism of membrane insertion is lacking. Here, we report experimental results of in vi…

research product

Transmembrane but not soluble helices fold inside the ribosome tunnel

Integral membrane proteins are assembled into the ER membrane via a continuous ribosome-translocon channel. The hydrophobicity and thickness of the core of the membrane bilayer leads to the expectation that transmembrane (TM) segments minimize the cost of harbouring polar polypeptide backbones by adopting a regular pattern of hydrogen bonds to form α-helices before integration. Co-translational folding of nascent chains into an α-helical conformation in the ribosomal tunnel has been demonstrated previously, but the features governing this folding are not well understood. In particular, little is known about what features influence the propensity to acquire α-helical structure in the ribosom…

research product