0000000000008653

AUTHOR

Debra Mohnen

The Effect of Calcium on the Cohesive Strength and Flexural Properties of Low-Methoxyl Pectin Biopolymers.

Abstract: Pectin binds the mesothelial glycocalyx of visceral organs, suggesting its potential role as a mesothelial sealant. To assess the mechanical properties of pectin films, we compared pectin films with a less than 50% degree of methyl esterification (low-methoxyl pectin, LMP) to films with greater than 50% methyl esterification (high-methoxyl pectin, HMP). LMP and HMP polymers were prepared by step-wise dissolution and high-shear mixing. Both LMP and HMP films demonstrated a comparable clear appearance. Fracture mechanics demonstrated that the LMP films had a lower burst strength than HMP films at a variety of calcium concentrations and hydration states. The water content also influe…

research product

Visualizing pectin polymer-polymer entanglement produced by interfacial water movement.

In this report, we investigated the physical conditions for creating pectin polymer-polymer (homopolymer) entanglement. The potential role of water movement in creating pectin entanglement was investigated by placing water droplets-equivalent to the water content of two gel phase films-between two glass phase films and compressing the films at variable probe velocities. Slow probe velocity (0.5 mm/sec) demonstrated no significant debonding. Corresponding videomicroscopy demonstrated an occasional water bridge, but no evidence of stranding or polymer entanglement. In contrast, fast probe velocity (5 mm/sec) resulted in 1) an increase in peak adhesion strength, 2) a progressive debonding curv…

research product

Water-Dependent Blending of Pectin Films: The Mechanics of Conjoined Biopolymers

Biodegradable pectin polymers have been recommended for a variety of biomedical applications, ranging from the delivery of oral drugs to the repair of injured visceral organs. A promising approach to regulate pectin biostability is the blending of pectin films. To investigate the development of conjoined films, we examined the physical properties of high-methoxyl pectin polymer-polymer (homopolymer) interactions at the adhesive interface. Pectin polymers were tested in glass phase (10&ndash

research product

Pectin biopolymer mechanics and microstructure associated with polysaccharide phase transitions.

Polysaccharide polymers like pectin can demonstrate striking and reversible changes in their physical properties depending upon relatively small changes in water content. Recent interest in using pectin polysaccharides as mesothelial sealants suggests that water content, rather than nonphysiologic changes in temperature, may be a practical approach to optimize the physical properties of the pectin biopolymers. Here, we used humidified environments to manipulate the water content of dispersed solution of pectins with a high degree of methyl esterification (high-methoxyl pectin; HMP). The gel phase transition was identified by a nonlinear increase in compression resistance at a water content …

research product

Analysis of pectin biopolymer phase states using acoustic emissions.

Acoustic emissions are stress or elastic waves produced by a material under external load. Since acoustic emissions are generated from within and transmitted through the substance, the acoustic signature provides insights into the physical and mechanical properties of the material. In this report, we used a constant velocity probe with force and acoustic emission monitoring to investigate the properties of glass phase and gel phase pectin films. In the gel phase films, a constant velocity uniaxial load produced periodic premonitory acoustic emissions with coincident force variations (saw-tooth pattern). SEM images of the gel phase microarchitecture indicated the presence of slip planes. In …

research product