0000000000009038

AUTHOR

Joachim Herz

showing 4 related works from this author

The lipoprotein receptor LRP1 modulates sphingosine-1-phosphate signaling and is essential for vascular development

2014

Low density lipoprotein receptor-related protein 1 (LRP1) is indispensable for embryonic development. Comparing different genetically engineered mouse models, we found that expression of Lrp1 is essential in the embryo proper. Loss of LRP1 leads to lethal vascular defects with lack of proper investment with mural cells of both large and small vessels. We further demonstrate that LRP1 modulates Gi-dependent sphingosine-1-phosphate (S1P) signaling and integrates S1P and PDGF-BB signaling pathways, which are both crucial for mural cell recruitment, via its intracellular domain. Loss of LRP1 leads to a lack of S1P-dependent inhibition of RAC1 and loss of constraint of PDGF-BB-induced cell migra…

AngiogenesisBlotting WesternBecaplerminEmbryonic DevelopmentNeovascularization PhysiologicRAC1BiologyReal-Time Polymerase Chain ReactionMural cellchemistry.chemical_compoundMiceCell MovementSphingosineHuman Umbilical Vein Endothelial CellsAnimalsHumansSphingosine-1-phosphateMolecular BiologyResearch ArticlesIn Situ HybridizationSphingosineTumor Suppressor ProteinsCell migrationCell BiologyProto-Oncogene Proteins c-sisLRP1ImmunohistochemistryCell biologyMicroscopy ElectronchemistryReceptors LDLLow-density lipoproteinSignal transductionLysophospholipidsGenetic EngineeringLow Density Lipoprotein Receptor-Related Protein-1Developmental BiologySignal Transduction
researchProduct

Low Density Lipoprotein Receptor-related Protein 1 (LRP1) Modulates N-Methyl-d-aspartate (NMDA) Receptor-dependent Intracellular Signaling and NMDA-i…

2013

The lipoprotein receptor LRP1 is essential in neurons of the central nervous system, as was revealed by the analysis of conditional Lrp1-deficient mouse models. The molecular basis of its neuronal functions, however, is still incompletely understood. Here we show by immunocytochemistry, electron microscopy, and postsynaptic density preparation that LRP1 is located postsynaptically. Basal and NMDA-induced phosphorylation of the transcription factor cAMP-response element-binding protein (CREB) as well as NMDA target gene transcription are reduced in LRP1-deficient neurons. In control neurons, NMDA promotes γ-secretase-dependent release of the LRP1 intracellular domain (LRP1-ICD). However, pul…

MaleN-MethylaspartateCell SurvivalBlotting WesternGene ExpressionMice Transgenicmacromolecular substancesAMPA receptorBiologyCREBReceptors N-Methyl-D-AspartateBiochemistryMiceNeurobiologyPostsynaptic potentialAnimalsMolecular BiologyCells CulturedMice KnockoutNeuronsReverse Transcriptase Polymerase Chain Reactionmusculoskeletal neural and ocular physiologyTumor Suppressor ProteinsMembrane ProteinsCell BiologyEmbryo MammalianLRP1Cell biologyProtein SubunitsReceptors LDLnervous systemSynapsesLDL receptorbiology.proteinNMDA receptorFemaleAmyloid Precursor Protein SecretasesSignal transductionDisks Large Homolog 4 ProteinGuanylate KinasesPostsynaptic densityLow Density Lipoprotein Receptor-Related Protein-1Protein BindingSignal TransductionSynaptosomesJournal of Biological Chemistry
researchProduct

Lrp4, a Novel Receptor for Dickkopf 1 and Sclerostin, Is Expressed by Osteoblasts and Regulates Bone Growth and Turnover In Vivo

2009

Lrp4 is a multifunctional member of the low density lipoprotein-receptor gene family and a modulator of extracellular cell signaling pathways in development. For example, Lrp4 binds Wise, a secreted Wnt modulator and BMP antagonist. Lrp4 shares structural elements within the extracellular ligand binding domain with Lrp5 and Lrp6, two established Wnt co-receptors with important roles in osteogenesis. Sclerostin is a potent osteocyte secreted inhibitor of bone formation that directly binds Lrp5 and Lrp6 and modulates both BMP and Wnt signaling. The anti-osteogenic effect of sclerostin is thought to be mediated mainly by inhibition of Wnt signaling through Lrp5/6 within osteoblasts. Dickkopf1 …

Genetic Markersmusculoskeletal diseasesmedicine.medical_specialtylcsh:MedicineBiologyBone morphogenetic proteinBone and BonesCell LineMicechemistry.chemical_compoundInternal medicineBiochemistry/Cell Signaling and Trafficking StructuresmedicineAnimalsHumanslcsh:ScienceLDL-Receptor Related ProteinsAdaptor Proteins Signal TransducingGlycoproteinsBone growthBone DevelopmentOsteoblastsMultidisciplinarylcsh:RWnt signaling pathwayLRP6Rheumatology/Bone and Mineral MetabolismLRP5OsteoblastPhenotypemedicine.anatomical_structureEndocrinologyGene Expression RegulationReceptors LDLGenetics and Genomics/Disease ModelschemistryOsteocyteBone Morphogenetic ProteinsIntercellular Signaling Peptides and ProteinsSclerostinlcsh:QSignal TransductionResearch ArticlePLoS ONE
researchProduct

C1 Inhibitor-C1¯sComplexes Are Internalized and Degraded by the Low Density Lipoprotein Receptor-related Protein

1997

Like other serpin-enzyme complexes (SECs), proteinase-complexed C1 inhibitor (C1-INH) is rapidly cleared from the circulation and thought to be a neutrophil chemoattractant, suggesting that complex formation causes structural rearrangements exposing a domain which is recognized by specific cell surface receptors. However, the cellular receptor(s) responsible for the catabolism and potential mediation of chemotaxis by C1-INH-protease complexes remained obscure. To determine whether the SEC receptor mediates the binding and potential chemotaxis of C1-INH·C1s, we performed binding assays with HepG2 cells, neutrophils, and monocytes, and the results show that C1-INH·C1s neither bind to these ce…

chemistry.chemical_classificationCatabolismPeptideChemotaxisCell Biologybiochemical phenomena metabolism and nutritionrespiratory systemBiologybacterial infections and mycosesBiochemistryMolecular biologyrespiratory tract diseaseschemistry.chemical_compoundchemistryLow-density lipoproteinKnockout mouseLDL receptorheterocyclic compoundsAsialoglycoprotein receptorReceptorMolecular BiologyJournal of Biological Chemistry
researchProduct