6533b830fe1ef96bd129717c
RESEARCH PRODUCT
Low Density Lipoprotein Receptor-related Protein 1 (LRP1) Modulates N-Methyl-d-aspartate (NMDA) Receptor-dependent Intracellular Signaling and NMDA-induced Regulation of Postsynaptic Protein Complexes
Michael FrotscherMichael FrotscherMichael K. E. SchäferMichael K. E. SchäferHans H. BockChikako NakajimaChikako NakajimaJoachim HerzJoachim HerzPetra MayPetra MayAkos Kuliksubject
MaleN-MethylaspartateCell SurvivalBlotting WesternGene ExpressionMice Transgenicmacromolecular substancesAMPA receptorBiologyCREBReceptors N-Methyl-D-AspartateBiochemistryMiceNeurobiologyPostsynaptic potentialAnimalsMolecular BiologyCells CulturedMice KnockoutNeuronsReverse Transcriptase Polymerase Chain Reactionmusculoskeletal neural and ocular physiologyTumor Suppressor ProteinsMembrane ProteinsCell BiologyEmbryo MammalianLRP1Cell biologyProtein SubunitsReceptors LDLnervous systemSynapsesLDL receptorbiology.proteinNMDA receptorFemaleAmyloid Precursor Protein SecretasesSignal transductionDisks Large Homolog 4 ProteinGuanylate KinasesPostsynaptic densityLow Density Lipoprotein Receptor-Related Protein-1Protein BindingSignal TransductionSynaptosomesdescription
The lipoprotein receptor LRP1 is essential in neurons of the central nervous system, as was revealed by the analysis of conditional Lrp1-deficient mouse models. The molecular basis of its neuronal functions, however, is still incompletely understood. Here we show by immunocytochemistry, electron microscopy, and postsynaptic density preparation that LRP1 is located postsynaptically. Basal and NMDA-induced phosphorylation of the transcription factor cAMP-response element-binding protein (CREB) as well as NMDA target gene transcription are reduced in LRP1-deficient neurons. In control neurons, NMDA promotes γ-secretase-dependent release of the LRP1 intracellular domain (LRP1-ICD). However, pull-down and chromatin immunoprecipitation (ChIP) assays showed no direct interaction between the LRP1-ICD and either CREB or target gene promoters. On the other hand, NMDA-induced degradation of the postsynaptic scaffold protein PSD-95 was impaired in the absence of LRP1, whereas its ubiquitination was increased, indicating that LRP1 influences the composition of postsynaptic protein complexes. Accordingly, NMDA-induced internalization of the AMPA receptor subunit GluA1 was impaired in LRP1-deficient neurons. These results show a role of LRP1 in the regulation and turnover of synaptic proteins, which may contribute to the reduced dendritic branching and to the neurological phenotype observed in the absence of LRP1.
year | journal | country | edition | language |
---|---|---|---|---|
2013-06-14 | Journal of Biological Chemistry |