0000000000009588

AUTHOR

Begoña Milián

Theoretical study of the molecular structure and the stability of neutral and reduced tetracyanoethylene

Abstract The molecular structure and the stability of neutral, anionic, and dianionic tetracyanoethylene (TCNE) have been studied with MP2, coupled-cluster (CC), and density functional theory (DFT) procedures. The optimized geometries are in agreement with the available experimental data, although significant deviations for the CN bond distance have been obtained at the MP2 level. The adiabatic electron affinity of TCNE calculated with the B3LYP method is overestimated by 0.32 eV. In the light of the CC results, the source of such an overestimation is suggested to lie on the theoretical approach, rather than on a too low experimental value.

research product

UV–Vis, IR, Raman and theoretical characterization of a novel quinoid oligothiophene molecular material

A quinoid-type oligothiophene, 3 0 ,4 0 -dibutyl-5,5 00 -bis(dicyanomethylene)-5,5 00 -dihidro-2,2 0 :5 0 ,2 00 -terthiophene, which can be viewed as an analog of TCNQ, has been investigated by spectroelectrochemistry and density functional theory calculations, in its neutral and dianionic states. Electrochemical data show that the molecule can be both reduced and oxidized at relatively low potentials. Upon reduction, both experiments and theory agree well with the generation of a dianionic charged species. The model shows that the electronic structure of the dianion is consistent with two anionic dicyanomethylene groups attached to a central terthienyl spine having an aromatic structure. T…

research product

On the electron affinity of TCNQ

The electron affinity of 7,7,8,8-tetracyano-p-quinodimethane (TCNQ) has been studied with density functional theory and coupled cluster (CC) procedures. The adiabatic electron affinity of TCNQ calculated with the B3LYP method is about 1 eV higher than the available experimental value. At the CCSD(T) level, the theoretical result is overestimated by more than 0.4 eV. The electron affinity computed for TCNQ is larger than that obtained for tetracyanoethylene at all levels of calculation, exactly the opposite of what is observed experimentally. Accordingly, a call for an additional empirical measurement of such a property is made.

research product

Spectroscopic and theoretical study of the molecular and electronic structures of a terthiophene-based quinodimethane.

The UV/Vis, infrared absorption, and Raman scattering spectra of 3',4'-dibutyl-5,5"-bis(dicyanomethylene)-5,5"-dihydro-2,2':5',2"-terthiophene have been analyzed with the aid of density functional theory calculations. The compound exhibits a quinoid structure in its ground electronic state and presents an intramolecular charge transfer from the terthiophene moiety to the C(CN)2 groups. The molecular system therefore consists of an electron-deficient terthiophene backbone end-capped with electron-rich C(CN)2 groups. The molecule is characterized by a strong absorption in the red, due to the HOMO-->LUMO pi-pi* electronic transition of the terthiophene backbone that shifts hypsochromically on …

research product

A theoretical study of neutral and reduced tetracyano-p-quinodimethane (TCNQ)

Abstract The molecular structure of neutral, anionic, and dianionic tetracyano- p -quinodimethane (TCNQ), as well as the electron affinity of TCNQ, have been studied with HF, MP2, and different density functional theory (DFT) procedures. The optimized geometries compare well with the available experimental data, although the C N bond distance is not correctly described at the MP2 level. The calculated parameters are rather insensitive to the basis set employed, and the addition of diffuse functions does not yield significant changes. When the extra electrons are added, the central ring of TCNQ progressively becomes more aromatic. Compared with the CCSD(T) estimate, the value of the adiabati…

research product

Spectroscopic and theoretical study of push-pull chromophores containing thiophene-based quinonoid structures as electron spacers

Donor−acceptor chromophores containing three different types of thiophene-based electron spacers and the same donor (1,3-dithiol-2-ylidene) and acceptor (dicyanomethylene) end groups have been investigated by infrared and vis-near-IR absorption spectroscopies with the aim of elucidating the ability of the heteroquinonoid spacers as electron transmitters. Density functional theory calculations have been carried out, both within the standard and the time-dependent formalisms, to assign the most relevant electronic and infrared features of these chromophores and to assess useful information about their molecular structures. Both theoretical calculations and vibrational spectra demonstrate the …

research product

Theoretical Study of the Electronic Excited States of Tetracyanoethylene and Its Radical Anion

The low-lying electronic states of tetracyanoethylene (TCNE) and its radical anion were studied using multiconfigurational second-order perturbation theory (CASPT2) and extended atomic natural orbital (ANO) basis sets. The results obtained yield a full interpretation of the electronic absorption spectra, explain the spectral changes undergone upon reduction, give support to the occurrence of a bound excited state for the anionic species, and provide valuable information for the rationalization of the experimental data obtained with electron transmission spectroscopy.

research product

Magnetic Properties of Quinoidal Oligothiophenes: More Than Good Candidates for Ambipolar Organic Semiconductors?

A series of quinoidal oligothiophenes have been investigated by means of solid-state Fourier-transform (FT)-Raman and electron spin resonance (ESR) spectroscopies complemented with density functional theory calculations. FT-Raman spectra recorded as a function of temperature show that, upon laser irradiation, the molecules undergo a reversible structural evolution from a quinoid-type pattern at low temperature to an aromatic-type pattern at high temperature. Moreover, ESR spectra show that a portion of these compounds exists in a biradical state at room temperature. These seemingly disconnected findings and others, such as conformational isomerism, are consistently explained by the consider…

research product