0000000000009600

AUTHOR

Julien Uzan

Exploiting a list of protein sequences

Abstract: We describe a software program to help exploit a database of aligned protein sequences. In addition to the classical lists of sequences, a graphical representation is used to get a better overview of the information. As natural parameters, the type of amino acid and sequence position are used. Various plots or 3D representations are then updated. Examples are shown based on globin sequences from various species and on the abnormal human hemoglobins. The software should be of interest to protein engineers who need to know what variants are already known.

research product

Coupling of the heme and an internal disulfide bond in human neuroglobin

Neuroglobin displays a hexacoordination His-Fe-His in the absence of external ligands such as oxygen. The observed oxygen affinity therefore depends on the binding rates of both oxygen and the competing distal histidine. Furthermore, the binding properties depend on the presence of an internal disulfide bond. In the case of human neuroglobin, cysteines at positions CD7 and D5 are sufficiently close to form an internal disulfide bond. For cytoglobin, the cysteine residues at positions A7 and GH4 may also form a disulfide bond. Mass spectrometry, ligand binding, and thiol accessibility studies were used to study the role influence of these disulfide bonds. Mutation of specific cysteines, or r…

research product

Neuroglobin and Other Hexacoordinated Hemoglobins Show a Weak Temperature Dependence of Oxygen Binding

AbstractMouse and human neuroglobins, as well as the hemoglobins from Drosophila melanogaster and Arabidopsis thaliana, were recombinantly expressed in Escherichia coli, and their ligand-binding properties were studied versus temperature. These globins have a common feature of being hexacoordinated (via the distal histidine) under deoxy conditions, as evidenced by a large amplitude for the alpha absorption band at 560nm and the Soret band at 426nm. The transition from the hexacoordinated form to the CO bound species is slow, as expected for a replacement reaction Fe-His → Fe → FeCO. The intrinsic binding rates would indicate a high oxygen affinity for the pentacoordinated form, due to rapid…

research product

Hyperthermal stability of neuroglobin and cytoglobin

Neuroglobin (Ngb) and cytoglobin (Cygb), recent additions to the globin family, display a hexa-coordinated (bis-histidyl) heme in the absence of external ligands. Although these proteins have the classical globin fold they reveal a very high thermal stability with a melting temperature (Tm) of 100 °C for Ngb and 95 °C for Cygb. Moreover, flash photolysis experiments at high temperatures reveal that Ngb remains functional at 90 °C. Human Ngb may have a disulfide bond in the CD loop region; reduction of the disulfide bond increases the affinity of the iron atom for the distal (E7) histidine, and leads to a 3 °C increase in the Tm for ferrous Ngb. A similar Tm is found for a mutant of human Ng…

research product

High Pressure Enhances Hexacoordination in Neuroglobin and Other Globins

The techniques of high applied pressure and flash photolysis have been combined to study ligand rebinding to neuroglobin (Ngb) and tomato Hb, globins that may display a His-Fe-His hexacoordination in the absence of external ligands. High pressure induces a moderate decrease in the His association rate and a large decrease in His dissociation rate, thus leading to an enhancement of the overall His affinity. The overall structural difference between penta- and hexacoordinated globins may be rather small and can be overcome by external modifications such as high pressure. Over the pressure range 0.1-700 MPa (7 kbar), the globins may show a loss of over a factor of 100 in the amplitude of the b…

research product

The redox state of the cell regulates the ligand binding affinity of human neuroglobin and cytoglobin.

Neuroglobin and cytoglobin reversibly bind oxygen in competition with the distal histidine, and the observed oxygen affinity therefore depends on the properties of both ligands. In the absence of an external ligand, the iron atom of these globins is hexacoordinated. There are three cysteine residues in human neuroglobin; those at positions CD7 and D5 are sufficiently close to form an internal disulfide bond. Both cysteine residues in cytoglobin, although localized in other positions than in human neuroglobin, may form a disulfide bond as well. The existence and position of these disulfide bonds was demonstrated by mass spectrometry and thiol accessibility studies. Mutation of the cysteines …

research product